On convergent sequences in dual groups

被引:2
|
作者
Ferrer, M. V. [1 ]
Hernandez, S. [1 ]
Tkachenko, M. [2 ]
机构
[1] Univ Jaume 1, Dept Matemat, Campus Riu Sec S-N, Castellon de La Plana 12071, Spain
[2] Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
关键词
Reflexive; Precompact; Pseudocompact; Baire property; Convergent sequence; BOHR COMPACTIFICATION; BOUNDEDNESS;
D O I
10.1007/s13398-020-00790-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide some characterizations of precompact abelian groups G whose dual group Gp perpendicular to endowed with the pointwise convergence topology on elements of G contains a nontrivial convergent sequence. In the special case of precompact abelian torsion groups G, we characterize the existence of a nontrivial convergent sequence in Gp perpendicular to by the following property of G: No infinite Hausdorff quotient group of G is countable. Also, we present an example of a dense subgroup G of the compact metrizable group Z(2)omega such that G is of the first category in itself, has measure zero, but the dual group Gp perpendicular to does not contain infinite compact subsets. This complements a result of J.E. Hart and K. Kunen (2005) on convergent sequences in dual groups. Making use of the group G we construct the first example of a precompact Pontryagin reflexive abelian group which is of the first Baire category.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] LIFTING CONVERGENT SEQUENCES WITH NETWORKS
    WEBB, JH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (JUL): : 27 - &
  • [32] The space of almost convergent sequences
    Semenov, E. M.
    Usachev, A. S.
    Khorpyakov, O. O.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 587 - 588
  • [33] Convergent sequences of orthogonal polynomials
    Chihara, TS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 682 - 682
  • [34] Acceleration of superlinearly convergent sequences
    Meyer, R
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (03) : 655 - 665
  • [35] On the Space of Almost Convergent Sequences
    Avdeev, N. N.
    MATHEMATICAL NOTES, 2019, 105 (3-4) : 464 - 468
  • [36] The Subspace of Almost Convergent Sequences
    Zvolinskii, R. E.
    Semenov, E. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (04) : 616 - 620
  • [37] NULL SEQUENCES AND CONVERGENT SERIES
    BLAIR, CE
    MYCIELSKI, J
    AKST, G
    ANDERSEN, KF
    BATES, G
    BIENENFELD, D
    BRIGHAM, R
    CATER, FS
    CHAUVEHEID, PG
    DIXON, M
    GILMER, R
    GOLDSTEIN, D
    GRIPENBERG, G
    HABAKKUK, W
    HERTZ, E
    JORSBOE, O
    KLEIN, B
    LEVY, J
    LOSSERS, OP
    MAXEY, W
    RIESE, A
    SKALSKY, M
    SOLOMON, A
    BELNA, C
    BROWN, J
    STENGER, A
    TAYLOR, L
    WILKER, JB
    ZIV, A
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (08): : 655 - 655
  • [38] Spaces of Ideal Convergent Sequences
    Mursaleen, M.
    Sharma, Sunil K.
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [39] On convergent sequences and properties of subspaces
    Gryzlov, A. A.
    Tsigvintseva, K. N.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (03): : 277 - 283
  • [40] ABSOLUTE ALMOST CONVERGENT SEQUENCES
    MURSALEEN
    HOUSTON JOURNAL OF MATHEMATICS, 1984, 10 (03): : 427 - 431