Perturbation Analysis of the Algebraic Metric Generalized Inverse in Lp(,)

被引:2
|
作者
Cao, Jianbing [1 ,2 ]
Xue, Yifeng [3 ,4 ]
机构
[1] Henan Inst Sci & Technol, Dept Math, Xinxiang, Henan, Peoples R China
[2] Henan Normal Univ, Postdoctoral Res Stn Phys, Xinxiang, Henan, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Res Ctr Operator Algebras, Shanghai 200241, Peoples R China
基金
中国博士后科学基金;
关键词
Best approximate solution; gap function; metric generalized inverse; stable perturbation; Primary; 47A05; Secondary; 46B20; LINEAR-OPERATORS; BANACH-SPACES;
D O I
10.1080/01630563.2017.1379025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X = LP cx)) and T, ST : X X be bounded i near operators. Put T = T 6T. In this paper, using the notion of quasi-additivity and the concept of stable perturbation, we will give some estimates of the upper bound of II TM - TM in terms of the gap function. As an application of main results, we also nvestigate the best approximate solution problem of ill -posed operator equation.
引用
收藏
页码:1624 / 1643
页数:20
相关论文
共 50 条
  • [31] Alternative algebraic perturbation expressions for the core-EP inverse of a matrix
    Ji, Jun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [32] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Li, Wen
    Chen, Yanmei
    Vong, Seakweng
    Luo, Qilun
    NUMERICAL ALGORITHMS, 2018, 79 (02) : 657 - 677
  • [33] Perturbation Bound for the Generalized Drazin Inverse of an Operator in Banach Space
    Liu, Xiaoji
    Qin, Yonghui
    FILOMAT, 2017, 31 (16) : 5177 - 5191
  • [34] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Wen Li
    Yanmei Chen
    Seakweng Vong
    Qilun Luo
    Numerical Algorithms, 2018, 79 : 657 - 677
  • [35] Criteria for the Metric Generalized Inverse and its Selections in Banach Spaces
    Henryk Hudzik
    Yuwen Wang
    Wenjing Zheng
    Set-Valued Analysis, 2008, 16 : 51 - 65
  • [36] Inverse Generalized Perturbation Theory in Reactor Core Constrained Calculations
    Dall'Osso, Aldo
    NUCLEAR SCIENCE AND ENGINEERING, 2009, 162 (01) : 109 - 116
  • [37] Criteria for the metric generalized inverse and its selections in banach spaces
    Hudzik, Henryk
    Wang, Yuwen
    Zheng, Wenjing
    SET-VALUED ANALYSIS, 2008, 16 (01): : 51 - 65
  • [38] AN EXTENSION OF THE PERTURBATION ANALYSIS FOR THE DRAZIN INVERSE
    Castro-Gonzalez, N.
    Martinez-Serrano, M. F.
    Robles, J.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 539 - 556
  • [39] Perturbation analysis of the stochastic algebraic Riccati equation
    Chiang C.-Y.
    Fan H.-Y.
    Lin M.M.
    Chen H.-A.
    Journal of Inequalities and Applications, 2013 (1)
  • [40] PERTURBATION ANALYSIS OF ALGEBRAIC RICCATI-EQUATIONS
    CODENOTTI, B
    FAVATI, P
    FLANDOLI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2B (04): : 817 - 830