Perturbation Analysis of the Algebraic Metric Generalized Inverse in Lp(,)

被引:2
|
作者
Cao, Jianbing [1 ,2 ]
Xue, Yifeng [3 ,4 ]
机构
[1] Henan Inst Sci & Technol, Dept Math, Xinxiang, Henan, Peoples R China
[2] Henan Normal Univ, Postdoctoral Res Stn Phys, Xinxiang, Henan, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Res Ctr Operator Algebras, Shanghai 200241, Peoples R China
基金
中国博士后科学基金;
关键词
Best approximate solution; gap function; metric generalized inverse; stable perturbation; Primary; 47A05; Secondary; 46B20; LINEAR-OPERATORS; BANACH-SPACES;
D O I
10.1080/01630563.2017.1379025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X = LP cx)) and T, ST : X X be bounded i near operators. Put T = T 6T. In this paper, using the notion of quasi-additivity and the concept of stable perturbation, we will give some estimates of the upper bound of II TM - TM in terms of the gap function. As an application of main results, we also nvestigate the best approximate solution problem of ill -posed operator equation.
引用
收藏
页码:1624 / 1643
页数:20
相关论文
共 50 条
  • [1] PERTURBATION ANALYSIS OF THE MOORE-PENROSE METRIC GENERALIZED INVERSE WITH APPLICATIONS
    Cao, Jianbing
    Xue, Yifeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 709 - 729
  • [2] Perturbation of the Moore-Penrose Metric generalized inverse with applications to the best approximate solution problem in Lp(Ω, μ)
    Cao, Jianbing
    Liu, Jiefang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (04) : 729 - 752
  • [3] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS
    Du, Fapeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04): : 100 - 114
  • [4] Perturbation analysis of generalized inverse of quaternion matrix
    Li, Ying
    Zhao, Linlin
    Advances in Matrix Theory and Applications, 2006, : 482 - 485
  • [5] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [6] FUNCTION APPROXIMATION BY ALGEBRAIC POLYNOMIALS IN LP METRIC
    RAFALSON, SZ
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (03): : 545 - 547
  • [7] Perturbation of the Moore–Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Jian Bing CAO
    Wan Qin ZHANG
    Acta Mathematica Sinica,English Series, 2016, (06) : 725 - 735
  • [8] PERTURBATION BOUNDS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE IN SOME BANACH SPACES
    Cao, Jianbing
    Zhang, Wanqin
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (01): : 17 - 29
  • [9] Perturbation of the Moore–Penrose metric generalized inverse in reflexive strictly convex Banach spaces
    Jian Bing Cao
    Wan Qin Zhang
    Acta Mathematica Sinica, English Series, 2016, 32 : 725 - 735
  • [10] Perturbation of the Moore–Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Jian Bing CAO
    Wan Qin ZHANG
    Acta Mathematica Sinica, 2016, 32 (06) : 725 - 735