On the almost monotone convergence of sequences of continuous functions

被引:0
|
作者
Grande, Zbigniew [1 ]
机构
[1] Casimirus Great Univ, Inst Math, Bydgoszcz, Poland
来源
关键词
Almost monotone convergence; Continuity; Baire; 1; class; Upper semicontinuity; Lower semicontinuity; Approximate continuity; APPROXIMATELY CONTINUOUS-FUNCTIONS; BAIRE CLASSES; DISCRETE; LIMITS;
D O I
10.2478/s11533-011-0030-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence (f (n) ) (n) of functions f (n) : X -> a"e almost decreases (increases) to a function f: X -> a"e if it pointwise converges to f and for each point x a X there is a positive integer n(x) such that f (n+1)(x) a parts per thousand currency sign f (n) (x) (f (n+1)(x) a parts per thousand yen f (n) (x)) for n a parts per thousand yen n(x). In this article I investigate this convergence in some families of continuous functions.
引用
收藏
页码:772 / 777
页数:6
相关论文
共 50 条
  • [21] A method of summation, almost always applicable, for the Fourier sequences of continuous functions
    Salem, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1937, 205 : 14 - 16
  • [22] A NOTE ON ALMOST CONVERGENCE OF FUNCTIONS
    KAUL, BN
    SINGH, V
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (09): : 1129 - 1132
  • [23] On almost β-continuous functions
    Noiri, T
    Popa, V
    ACTA MATHEMATICA HUNGARICA, 1998, 79 (04) : 329 - 339
  • [24] On the almost sure convergence of Syracuse sequences
    Slakmon, Alain
    Macot, Luc
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (15) : 1625 - 1630
  • [25] ALMOST EVERYWHERE CONVERGENCE OF SPLINE SEQUENCES
    Mueller, Paul F. X.
    Passenbrunner, Markus
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (01) : 149 - 177
  • [26] ALMOST CONTINUOUS FUNCTIONS
    GARRETT, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1061 - &
  • [27] On Almost β-Continuous Functions
    T. Noiri
    V. Popa
    Acta Mathematica Hungarica, 1998, 79 : 329 - 339
  • [28] Almost everywhere convergence of spline sequences
    Paul F. X. Müller
    Markus Passenbrunner
    Israel Journal of Mathematics, 2020, 240 : 149 - 177
  • [29] On the Convergence of Monotone Hurwitz Generating Functions
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ANNALS OF COMBINATORICS, 2017, 21 (01) : 73 - 81
  • [30] On the Convergence of Monotone Hurwitz Generating Functions
    I. P. Goulden
    Mathieu Guay-Paquet
    Jonathan Novak
    Annals of Combinatorics, 2017, 21 : 73 - 81