We consider modelling of stationary continuous-time stochastic differential equations with applications in discrete-time Bayesian statistical inversion. We formulate the processes in such a way that the processes are discretisation-invariant and fast to compute.
机构:
Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Hu, Gangshi
Lou, Yiming
论文数: 0引用数: 0
h-index: 0
机构:
Adv Projects Res Inc, La Verne, CA 91750 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Lou, Yiming
Christofides, Panagiotis D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA