Large-scale estimates of cellular origins of mRNAs: Enhancing the yield of transcriptome analyses

被引:12
|
作者
Sibille, Etienne [1 ,2 ]
Arango, Victoria [3 ]
Joeyen-Waldorf, Jennifer [1 ]
Wang, Yingjie [1 ]
Leman, Samuel [4 ]
Surget, Alexandre [4 ]
Belzung, Catherine [4 ]
Mann, J. John [3 ]
Lewis, David A. [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Ctr Neurosci, Pittsburgh, PA 15213 USA
[3] Columbia Univ, Dept Psychiat, New York, NY 10027 USA
[4] Univ Tours, Psychobiol Emot EA 3248, Tours, France
关键词
mRNA; array; transcriptome; white matter; gray matter; mouse; human;
D O I
10.1016/j.jneumeth.2007.08.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression profiling holds great promise for identifying molecular pathologies of central nervous system disorders. However, the analysis of brain tissue poses unique analytical challenges, as typical microarray signals represent averaged transcript levels across neuronal and glial cell populations. Here we have generated ratios of gene transcript levels between gray and adjacent white matter samples to estimate the relative cellular origins of expression. We show that incorporating these ratios into transcriptome analysis (i) provides new analytical perspectives, (ii) increases the potential for biological insight obtained from postmortem transcriptome studies, (iii) expands knowledge about glial and neuronal cellular programs and (iv) facilitates the generation of cell-type specific hypotheses. This approach represents a robust and cost-effective "add-on" to transcriptome analyses of the mammalian brain. As this approach can be applied post hoc, we provide tables of ratios for analysis of existing mouse and human brain datasets. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 50 条
  • [43] Metrics and analyses in the test phase of large-scale software
    Obara, E
    Kawasaki, T
    Ookawa, Y
    Maeda, N
    JOURNAL OF SYSTEMS AND SOFTWARE, 1997, 38 (01) : 37 - 46
  • [44] Machine learning for large-scale crop yield forecasting
    Paudel, Dilli
    Boogaard, Hendrik
    de Wit, Allard
    Janssen, Sander
    Osinga, Sjoukje
    Pylianidis, Christos
    Athanasiadis, Ioannis N.
    AGRICULTURAL SYSTEMS, 2021, 187
  • [45] Extraction yield prediction for the large-scale recovery of cannabinoids
    Plommer, Hart
    Betinol, Isaiah O.
    Dupree, Tom
    Roggen, Markus
    Reid, Jolene P.
    DIGITAL DISCOVERY, 2024, 3 (01): : 155 - 162
  • [46] THE PROBLEM OF PLOT SIZE IN LARGE-SCALE YIELD SURVEYS
    SUKHATME, PV
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1947, 42 (238) : 297 - 310
  • [47] LARGE-SCALE PERIODICITY - PROBLEMS WITH CELLULAR-MODELS
    WILLIAMS, BG
    PEACOCK, JA
    HEAVENS, AF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 252 (02) : P43 - P46
  • [48] THE NEUTRINO MASS AND THE CELLULAR LARGE-SCALE STRUCTURE OF THE UNIVERSE
    RUFFINI, R
    SONG, DJ
    TARAGLIO, S
    IAU SYMPOSIA, 1987, (124): : 719 - 722
  • [49] THE INO MASS AND THE CELLULAR LARGE-SCALE STRUCTURE OF THE UNIVERSE
    RUFFINI, R
    SONG, DJ
    TARAGLIO, S
    ASTRONOMY & ASTROPHYSICS, 1988, 190 (1-2) : 1 - 9
  • [50] Causal relationship inference for a large-scale cellular network
    Zhou, Tong
    Wang, Ya-Li
    BIOINFORMATICS, 2010, 26 (16) : 2020 - 2028