Large-scale estimates of cellular origins of mRNAs: Enhancing the yield of transcriptome analyses

被引:12
|
作者
Sibille, Etienne [1 ,2 ]
Arango, Victoria [3 ]
Joeyen-Waldorf, Jennifer [1 ]
Wang, Yingjie [1 ]
Leman, Samuel [4 ]
Surget, Alexandre [4 ]
Belzung, Catherine [4 ]
Mann, J. John [3 ]
Lewis, David A. [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Ctr Neurosci, Pittsburgh, PA 15213 USA
[3] Columbia Univ, Dept Psychiat, New York, NY 10027 USA
[4] Univ Tours, Psychobiol Emot EA 3248, Tours, France
关键词
mRNA; array; transcriptome; white matter; gray matter; mouse; human;
D O I
10.1016/j.jneumeth.2007.08.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression profiling holds great promise for identifying molecular pathologies of central nervous system disorders. However, the analysis of brain tissue poses unique analytical challenges, as typical microarray signals represent averaged transcript levels across neuronal and glial cell populations. Here we have generated ratios of gene transcript levels between gray and adjacent white matter samples to estimate the relative cellular origins of expression. We show that incorporating these ratios into transcriptome analysis (i) provides new analytical perspectives, (ii) increases the potential for biological insight obtained from postmortem transcriptome studies, (iii) expands knowledge about glial and neuronal cellular programs and (iv) facilitates the generation of cell-type specific hypotheses. This approach represents a robust and cost-effective "add-on" to transcriptome analyses of the mammalian brain. As this approach can be applied post hoc, we provide tables of ratios for analysis of existing mouse and human brain datasets. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 50 条
  • [1] Large-scale transcriptome and proteome analyses of schizophrenic brains
    Ojopi, E
    De Souza, D
    Schmitt, A
    Gattaz, W
    Neto, ED
    SCHIZOPHRENIA RESEARCH, 2006, 81 : 193 - 193
  • [2] CrusTome: A transcriptome database resource for large-scale analyses across Crustacea
    Perez-Moreno, Jorge
    Kozma, Mihika
    Deleo, Danielle
    Bracken-Grissom, Heather
    Durica, David
    Mykles, Don-Ald
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2023, 63 : S356 - S356
  • [3] CrusTome: a transcriptome database resource for large-scale analyses across Crustacea
    Perez-Moreno, Jorge L.
    Kozma, Mihika T.
    DeLeo, Danielle M.
    Bracken-Grissom, Heather D.
    Durica, David S.
    Mykles, Donald L.
    G3-GENES GENOMES GENETICS, 2023, 13 (07):
  • [4] Large-scale profiling of the Arabidopsis transcriptome
    Zhu, T
    Wang, X
    PLANT PHYSIOLOGY, 2000, 124 (04) : 1472 - 1476
  • [5] EXPLOSIVE ORIGINS OF LARGE-SCALE STRUCTURES
    OSTRIKER, JP
    IAU SYMPOSIA, 1988, (130): : 321 - 329
  • [6] Overcoming the Digital Divide by Large-Scale Coverage Analyses for mmWave Cellular Networks
    Zhang, Yaguang
    Krogmeier, James V.
    Anderson, Christopher R.
    Love, David J.
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1190 - 1194
  • [7] Enhancing DLV for Large-Scale Reasoning
    Leone, Nicola
    Allocca, Carlo
    Alviano, Mario
    Calimeri, Francesco
    Civili, Cristina
    Costabile, Roberta
    Fiorentino, Alessio
    Fusca, Davide
    Germano, Stefano
    Laboccetta, Giovanni
    Cuteri, Bernardo
    Manna, Marco
    Perri, Simona
    Reale, Kristian
    Ricca, Francesco
    Veltri, Pierfrancesco
    Zangari, Jessica
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, LPNMR 2019, 2019, 11481 : 312 - 325
  • [9] Large-scale analyses of schizophrenia proteome
    Oliveira, Bruno M.
    Martins-de-Souza, Daniel
    REVISTA DE PSIQUIATRIA CLINICA, 2013, 40 (01): : 16 - 19
  • [10] Large-Scale Analyses of Glycosylation in Cellulases
    Victor Olman
    Genomics,Proteomics & Bioinformatics, 2009, (04) : 194 - 199