Optimal transport maps on Alexandrov spaces revisited

被引:0
|
作者
Rajala, Tapio [1 ]
Schultz, Timo [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; CYCLICAL MONOTONICITY; POLAR FACTORIZATION; EXISTENCE; GEOMETRY; UNIQUENESS;
D O I
10.1007/s00229-021-01333-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative proof for the fact that in n-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely (n - 1)-unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full optimality of a given plan but rather on the c-monotonicity, thus we obtain the existence of transport maps for wider class of (possibly non-optimal) transport plans.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Optimal transport maps on Alexandrov spaces revisited
    Tapio Rajala
    Timo Schultz
    manuscripta mathematica, 2022, 169 : 1 - 18
  • [2] Existence and uniqueness of optimal maps on Alexandrov spaces
    Bertrand, Jerome
    ADVANCES IN MATHEMATICS, 2008, 219 (03) : 838 - 851
  • [3] Harmonic Maps Between Alexandrov Spaces
    Jia-Cheng Huang
    Hui-Chun Zhang
    The Journal of Geometric Analysis, 2017, 27 : 1355 - 1392
  • [4] Harmonic Maps Between Alexandrov Spaces
    Huang, Jia-Cheng
    Zhang, Hui-Chun
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1355 - 1392
  • [5] Convergence of harmonic maps between Alexandrov spaces
    Jia-Cheng Huang
    Guoqiang Wu
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [6] Convergence of harmonic maps between Alexandrov spaces
    Huang, Jia-Cheng
    Wu, Guoqiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [7] Optimal transport maps on infinite dimensional spaces
    Fang, Shizan
    Nolot, Vincent
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (04) : 715 - 732
  • [8] Optimal transport maps on infinite dimensional spaces
    Shizan Fang
    Vincent Nolot
    Frontiers of Mathematics in China, 2015, 10 : 715 - 732
  • [9] Partial Regularity of Harmonic Maps From Alexandrov Spaces
    Ge, Huabin
    Jiang, Wenshuai
    Zhang, Hui-Chun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (15) : 11575 - 11601
  • [10] Lipschitz continuity of harmonic maps between Alexandrov spaces
    Hui-Chun Zhang
    Xi-Ping Zhu
    Inventiones mathematicae, 2018, 211 : 863 - 934