Hazard function given a functional variable:: Non-parametric estimation under strong mixing conditions

被引:22
|
作者
Quintela-del-Rio, Alejandro [1 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna, Spain
关键词
conditional density; conditional distribution; conditional hazard; kernel smoothing; functional variable; non-parametric estimation; asymptotic normality; mixing;
D O I
10.1080/10485250802159297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study here the kernel type, non-parametric estimation of the conditional hazard function, based on a sample of functional dependent data. The almost complete convergence of the conditional hazard estimate is easily derived using the properties referred by Ferraty et al for the conditional distribution and conditional density estimates. The asymptotic bias and variances of the three estimates (conditional density, distribution and hazard) are calculated and compared with the results obtained in p-dimensional non-parametric kernel estimation. The asymptotic normality is established for the three mentioned estimates. Finally, an application to an earthquake data set is made.
引用
收藏
页码:413 / 430
页数:18
相关论文
共 50 条
  • [41] Vertex Exchange Method for non-parametric estimation of mixing distributions in logistic mixed models
    Marquart, Louise
    Verbeke, Geert
    STATISTICAL MODELLING, 2021, 21 (04) : 359 - 377
  • [42] ON THE SMOOTHED NON-PARAMETRIC ESTIMATION OF MIXING PROPORTION BASED ON POST-STRATIFIED SAMPLES
    Krishnaiah, Y. S. Rama
    Trivedi, Manish
    Satish, Konda
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (02): : 803 - 816
  • [43] On non parametric kernel estimation of the mode of the regression function in the strong mixing random design model with censored data
    Bouzebda, Salim
    Khardani, Salah
    Slaoui, Yousri
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (09) : 2623 - 2656
  • [44] Recursive non-parametric kernel classification rule estimation for independent functional data
    Yousri Slaoui
    Computational Statistics, 2021, 36 : 79 - 112
  • [45] Recursive non-parametric kernel classification rule estimation for independent functional data
    Slaoui, Yousri
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 79 - 112
  • [46] Nonparametric estimation of the hazard function under dependence conditions.
    Estévez-Pérez, G
    Quintela-del-Río, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (10) : 2297 - 2331
  • [47] Non-parametric estimation of the generalized past entropy function with censored dependent data
    Maya, R.
    Abdul-Sathar, E. I.
    Rajesh, G.
    STATISTICS & PROBABILITY LETTERS, 2014, 90 : 129 - 135
  • [48] Non-parametric Sub-pixel Local Point Spread Function Estimation
    Delbracio, Mauricio
    Muse, Pablo
    Almansa, Andres
    IMAGE PROCESSING ON LINE, 2012, 2 : 8 - 21
  • [49] Non-parametric estimation of a survival function with two-stage design studies
    Li, Gang
    Tseng, Chi-Hong
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 193 - 211
  • [50] Non-parametric estimation of the preferential attachment function from one network snapshot
    Pham, Thong
    Sheridan, Paul
    Shimodaira, Hidetoshi
    JOURNAL OF COMPLEX NETWORKS, 2021, 9 (05)