PRESERVATION OF STRONG NORMALISATION MODULO PERMUTATIONS FOR THE STRUCTURAL λ-CALCULUS

被引:9
|
作者
Accattoli, Beniamino [1 ,2 ]
Kesner, Delia [3 ]
机构
[1] Ecole Polytech, INRIA Saclay, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, F-91128 Palaiseau, France
[3] Univ Paris Diderot, PPS, CNRS, Paris, France
关键词
Lambda-calculus; explicit substitutions; preservation of strong normalisation; CALL-BY-VALUE;
D O I
10.2168/LMCS-8(1:28)2012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by a recent graphical formalism for lambda-calculus based on linear logic technology, we introduce an untyped structural lambda-calculus, called lambda j, which combines actions at a distance with exponential rules decomposing the substitution by means of weakening, contraction and derelicition. First, we prove some fundamental properties of lambda j such as confluence and preservation of beta-strong normalisation. Second, we add a strong bisimulation to lambda j by means of an equational theory which captures in particular Regnier's sigma-equivalence. We then complete this bisimulation with two more equations for (de) composition of substitutions and we prove that the resulting calculus still preserves beta-strong normalization. Finally, we discuss some consequences of our results.
引用
收藏
页数:44
相关论文
共 50 条
  • [31] STRONG FIXED-POINTS OF PERMUTATIONS
    CALLAN, D
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (08): : 800 - 801
  • [32] A proof of strong normalisation using domain theory
    Coquand, Thierry
    Spiwack, Arnaud
    21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2006, : 307 - +
  • [33] Two oiseau decompositions of permutations and their application to Eulerian calculus
    Foata, D
    Randrianarivony, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (03) : 342 - 363
  • [34] A PROOF OF STRONG NORMALISATION USING DOMAIN THEORY
    Coquand, Thierry
    Spiwack, Arnaud
    LOGICAL METHODS IN COMPUTER SCIENCE, 2007, 3 (04)
  • [35] Strong lensing statistics and the power spectrum normalisation
    Fedeli, C.
    Bartelmann, M.
    Meneghetti, M.
    Moscardini, L.
    Astronomy and Astrophysics, 2008, 486 (01): : 35 - 44
  • [36] Strong lensing statistics and the power spectrum normalisation
    Fedeli, C.
    Bartelmann, M.
    Meneghetti, M.
    Moscardini, L.
    ASTRONOMY & ASTROPHYSICS, 2008, 486 (01) : 35 - 44
  • [37] A DPLL-based calculus for ground satisfiability modulo theories
    Tinelli, C
    LOGICS IN ARTIFICIAL INTELLIGENCE 8TH, 2002, 2424 : 308 - 319
  • [38] Axiomatic rewriting theory II:: The λσ-calculus enjoys finite normalisation cones
    Melliès, PA
    JOURNAL OF LOGIC AND COMPUTATION, 2000, 10 (03) : 461 - 487
  • [39] A Congruence Modulo Four for Real Schubert Calculus with Isotropic Flags
    Hein, Nickolas
    Sottile, Frank
    Zelenko, Igor
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 309 - 318
  • [40] Strong normalisation of cut-elimination that simulates β-reduction
    Kikuchi, Kentaro
    Lengrand, Stephane
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2008, 4962 : 380 - +