Perspectives on Anomaly and Event Detection in Exascale Systems

被引:2
|
作者
Iuhasz, Gabriel [1 ,2 ]
Petcu, Dana [1 ,2 ]
机构
[1] Intitute E Austria Timisoara, Timisoara, Romania
[2] West Univ Timisoara, Timisoara, Romania
关键词
exascale; machine learning; anomaly; distributed; monitoring; PERFORMANCE;
D O I
10.1109/BigDataSecurity-HPSC-IDS.2019.00051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data methods and technologies to allow the execution of scientific workloads which are not tractable at this present time. In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show how it can be used to handle failures during job execution.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 50 条
  • [41] A Systematic Review of Anomaly Detection for Business Process Event Logs
    Ko, Jonghyeon
    Comuzzi, Marco
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2023, 65 (04) : 441 - 462
  • [42] Dynamic Clustering for Event Detection and Anomaly Identification in Video Surveillance
    Rupasinghe, R. A. A.
    Padmasiri, D. A.
    Senanayake, S. G. M. P.
    Godaliyadda, G. M. R. I.
    Ekanayake, M. P. B.
    Wijayakulasooriya, J. V.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 396 - 401
  • [43] Anomaly detection and event mining in cold forming manufacturing processes
    Diego Nieves Avendano
    Daniel Caljouw
    Dirk Deschrijver
    Sofie Van Hoecke
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 837 - 852
  • [44] Event-Based Anomaly Detection for Searches for New Physics
    Chekanov, Sergei
    Hopkins, Walter
    UNIVERSE, 2022, 8 (10)
  • [45] Anomaly detection and event mining in cold forming manufacturing processes
    Nieves Avendano, Diego
    Caljouw, Daniel
    Deschrijver, Dirk
    Van Hoecke, Sofie
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 115 (03): : 837 - 852
  • [46] Autoencoder with Spiking in Frequency Domain for Anomaly Detection of Uncertainty Event
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 245 - 248
  • [47] Multivariate Anomaly Detection in Object-Centric Event Data
    Abb, Luka
    Rehse, Jana-Rebecca
    BUSINESS PROCESS MANAGEMENT FORUM, BPM 2024, 2024, 526 : 20 - 36
  • [48] Mention-anomaly-based Event Detection and Tracking in Twitter
    Guille, Adrien
    Favre, Cecile
    2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), 2014, : 375 - 382
  • [49] Autoencoder with Spiking in Frequency Domain for Anomaly Detection of Uncertainty Event
    Yokkanipon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2020, 6 (04): : 231 - 234
  • [50] Event-driven weakly supervised video anomaly detection
    Sun, Shengyang
    Gong, Xiaojin
    IMAGE AND VISION COMPUTING, 2024, 149