Perspectives on Anomaly and Event Detection in Exascale Systems

被引:2
|
作者
Iuhasz, Gabriel [1 ,2 ]
Petcu, Dana [1 ,2 ]
机构
[1] Intitute E Austria Timisoara, Timisoara, Romania
[2] West Univ Timisoara, Timisoara, Romania
关键词
exascale; machine learning; anomaly; distributed; monitoring; PERFORMANCE;
D O I
10.1109/BigDataSecurity-HPSC-IDS.2019.00051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data methods and technologies to allow the execution of scientific workloads which are not tractable at this present time. In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show how it can be used to handle failures during job execution.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 50 条
  • [1] Model-based Anomaly Detection for Discrete Event Systems
    Klerx, Timo
    Anderka, Maik
    Buening, Hans Kleine
    Priesterjahn, Steffen
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 665 - 672
  • [2] GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC systems
    Molan, Martin
    Ardebili, Mohsen Seyedkazemi
    Khan, Junaid Ahmed
    Beneventi, Francesco
    Cesarini, Daniele
    Borghesi, Andrea
    Bartolini, Andrea
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 644 - 653
  • [3] Explainable AI for Event and Anomaly Detection and Classification in Healthcare Monitoring Systems
    Abououf, Menatalla
    Singh, Shakti
    Mizouni, Rabeb
    Otrok, Hadi
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 3446 - 3457
  • [4] Conditional anomaly detection in event streams
    Huber, Marco F.
    AT-AUTOMATISIERUNGSTECHNIK, 2017, 65 (04) : 233 - 244
  • [5] PESKEA: Anomaly Detection Framework for Profiling Kernel Event Attributes in Embedded Systems
    Ezeme, Okwudili M.
    Azim, Akramul
    Mahmoud, Qusay H.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (02) : 957 - 971
  • [6] Complex event recognition and anomaly detection with event behavior model
    Liu, Min-Chang
    Hsu, Fang-Rong
    Huang, Chua-Huang
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [7] Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives
    Canal, Ramon
    Hernandez, Carles
    Tornero, Rafa
    Cilardo, Alessandro
    Massari, Giuseppe
    Reghenzani, Federico
    Fornaciari, William
    Zapater, Marina
    Atienza, David
    Oleksiak, Ariel
    Piatek, Wojciech
    Abella, Jaume
    ACM COMPUTING SURVEYS, 2020, 53 (05)
  • [8] Event Block Identification and Analysis for Effective Anomaly Detection to Build Reliable HPC Systems
    Li, Zongze
    Davidson, Matthew
    Fu, Song
    Blanchard, Sean
    Lang, Michael
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 781 - 788
  • [9] Visual Anomaly Detection in Event Sequence Data
    Guo, Shunan
    Jin, Zhuochen
    Chen, Qing
    Gotz, David
    Zha, Hongyuan
    Cao, Nan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1125 - 1130
  • [10] Anomaly Detection on Event Logs with a Scarcity of Labels
    Barbon Junior, Sylvio
    Ceravolo, Paolo
    Damiani, Ernesto
    Omori, Nicolas Jashchenko
    Tavares, Gabriel Marques
    2020 2ND INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2020), 2020, : 161 - 168