Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy

被引:61
|
作者
Kang, JK [1 ]
Bénar, CG [1 ]
Al-Asmi, A [1 ]
Khani, YA [1 ]
Pike, GB [1 ]
Dubeau, F [1 ]
Gotman, J [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst, Montreal, PQ H3A 2B4, Canada
关键词
simultaneous EEG-fMRI; hemodynamic response; subject-specific; BOLD; epilepsy; statistical analysis;
D O I
10.1016/S1053-8119(03)00290-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Combining electroencephalogram (EEG) and functional MRI (fMRI) allows localization of brain regions activated as a result of epileptic spikes. The statistical analysis of fMRI data usually includes a standard model of the hemodynamic response function (HRF) but it is not known how well this fits the actual HRF of epileptic spikes. The objective of this exploratory study was to compare the activated areas and t-statistical scores obtained with a standard HRF to those obtained with a patient-specific HRF. Eight patients with focal epilepsy were studied. We obtained an estimate of the patient-specific HRFs for each patient at the local maximum of activation in the standard HRF analysis. The activated areas obtained with the patient-specific HRFs were larger or similar to the originally activated areas. Additional activated areas were seen in five patients, and most were compatible with the EEG and anatomical MRI localization of epileptogenic and lesional regions. Using patient-specific HRFs brings increased sensitivity to the analysis of epileptic spikes by EEG-fMRI. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1162 / 1170
页数:9
相关论文
共 50 条
  • [31] Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution
    Prokopis C. Prokopiou
    Alba Xifra-Porxas
    Michalis Kassinopoulos
    Marie-Hélène Boudrias
    Georgios D. Mitsis
    Brain Topography, 2022, 35 : 302 - 321
  • [32] Simultaneous EEG-fMRI in patients with unverricht-lundborg disease: Event-related desynchronization/synchronization and hemodynamic response analysis
    Visani E.
    Minati L.
    Canafoglia L.
    Gilioli I.
    Salvatoni L.
    Varotto G.
    Fazio P.
    Aquino D.
    Bruzzone M.G.
    Franceschetti S.
    Panzica F.
    Computational Intelligence and Neuroscience, 2010, 2010
  • [33] Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution
    Prokopiou, Prokopis C.
    Xifra-Porxas, Alba
    Kassinopoulos, Michalis
    Boudrias, Marie-Helene
    Mitsis, Georgios D.
    BRAIN TOPOGRAPHY, 2022, 35 (03) : 302 - 321
  • [34] INFERRING PATIENT-SPECIFIC PHYSIOLOGICAL PARAMETERS FROM INTRACRANIAL EEG: THEORETICAL STUDIES
    Freestone, D. R.
    Grayden, D. B.
    Cook, M.
    Nesic, D.
    EPILEPSIA, 2012, 53 : 201 - 201
  • [35] LOCALIZATION OF THE ICTAL ONSET ZONE USING INTERICTAL EEG-FMRI IN THE PRESURGICAL EVALUATION OF CONSECUTIVE PATIENTS WITH REFRACTORY FOCAL EPILEPSY
    Tousseyn, S.
    Dupont, P.
    Sunaert, S.
    Van Paesschen, W.
    EPILEPSIA, 2012, 53 : 13 - 14
  • [36] Automatic Framework for Patient-Specific Biomechanical Computations of Organ Deformation: An Epilepsy (EEG) Case Study
    Safdar, Saima
    Zwick, Benjamin
    Bourantas, George
    Joldes, Grand R.
    Warfield, Simon K.
    Hyde, Damon E.
    Wittek, Adam
    Miller, Karol
    COMPUTATIONAL BIOMECHANICS FOR MEDICINE, 2022, : 75 - 89
  • [37] The impact of mapping interictal discharges using EEG-fMRI on the epilepsy presurgical clinical decision making process: A prospective study
    Markoula, Sofia
    Chaudhary, Umair J.
    Perani, Suejen
    De Ciantis, Alessio
    Yadee, Tinonkorn
    Duncan, John S.
    Diehl, Beate
    McEvoy, Andrew W.
    Lemieux, Louis
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2018, 61 : 30 - 37
  • [38] Review of AI-on-the-Edge EEG-Based Patient-Specific Epilepsy Tracking SoCs
    Zhang, Lian
    Zhang, Miaolin
    Tsai, Chne-Wuen
    Yoo, Jerald
    2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 384 - 388
  • [39] Patient-Specific Epilepsy Seizure Detection Using Random Forest Classification over One-Dimension Transformed EEG Data
    Pinto-Orellana, Marco A.
    Cerqueira, Fabio R.
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 519 - 528
  • [40] DECREASING SCANNING TIME AND INCREASING SENSITIVITY IN EEG-fMRI STUDIES OF EPILEPTIC PATIENTS USING A NEWFAST MRI SEQUENCE
    Safi-Harb, M.
    Proulx, S.
    An, D.
    Gotman, J.
    EPILEPSIA, 2013, 54 : 215 - 215