A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer

被引:241
|
作者
Braunstein, Steve
Karpisheva, Ksenia
Pola, Carolina
Goldberg, Judith
Hochman, Tsivia
Yee, Herman
Cangiarella, Joan
Arju, Rezina
Formenti, Silvia C.
Schneider, Robert J. [1 ]
机构
[1] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
[2] NYU, Sch Med, Div Biostat, Dept Environm Med, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[4] NYU, Sch Med, Inst Canc, New York, NY 10016 USA
关键词
D O I
10.1016/j.molcel.2007.10.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational regulation is critical in cancer development and progression. Translation sustains tumor growth and development of a tumor vasculature, a process known as angiogenesis, which is activated by hypoxia. Here we first demonstrate that a majority of large advanced breast cancers overexpress translation regulatory protein 4E-BP1 and initiation factor elF4G. Using model animal and cell studies, we then show that overexpressed 4E-BP1 and elF4G orchestrate a hypoxia-activated switch from cap-dependent to cap-independent mRNA translation that promotes increased tumor angiogenesis and growth at the level of selective mRNA translation. Elevated levels of 4E-BP1 trigger hypoxia inhibition of cap-dependent mRNA translation at high-oxygen levels and, with eIF4G, increase selective translation of mRNAs containing internal ribosome entry sites (IRESs) that include key proangiogenic, hypoxia, and survival mRNAs. The switch from cap-dependent to cap-independent mRNA translation facilitates tumor angiogenesis and hypoxia responses in animal models.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 50 条
  • [21] An activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation
    Dyer, JR
    Michel, S
    Lee, W
    Castellucci, VF
    Wayne, NL
    Sossin, WS
    NATURE NEUROSCIENCE, 2003, 6 (03) : 219 - 220
  • [22] On the origin of the cap-dependent initiation of translation in eukaryotes
    Hernandez, Greco
    TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (04) : 166 - 175
  • [23] Modulation of cap-dependent translation by nucleoside phosphoramidates
    Ghosh, P
    Bitterman, P
    Polunovsky, V
    Benymov, A
    Wagner, CR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U656 - U656
  • [24] Cap-independent translation initiation of the unspliced RNA of retroviruses
    Barrera, Aldo
    Olguin, Valeria
    Vera-Otarola, Jorge
    Lopez-Lastra, Marcelo
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2020, 1863 (09):
  • [25] RNA determinants of picornavirus cap-independent translation initiation
    Stewart, SR
    Semler, BL
    SEMINARS IN VIROLOGY, 1997, 8 (03): : 242 - 255
  • [26] Structural Regulation of Cap-Independent Translation in Enterovirus 71
    Tolbert, Michele
    Morgan, Christopher E.
    Li, Mei-Ling
    Tolbert, Blanton S.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 516A - 516A
  • [27] Crystal structure of a cap-independent translation enhancer RNA
    Lewicka, Anna
    Roman, Christina
    Jones, Stacey
    Disare, Michael
    Rice, Phoebe A.
    Piccirilli, Joseph A.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (16) : 8891 - 8907
  • [28] 3′ Cap-Independent Translation Enhancers of Plant Viruses
    Simon, Anne E.
    Miller, W. Allen
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 67, 2013, 67 : 21 - 42
  • [29] New structural insights into cap-independent translation initiation
    Brilot, Axel
    Koh, Cha San
    Grigorieff, Nikolaus
    Korostelev, Andrei
    FASEB JOURNAL, 2014, 28 (01):
  • [30] A Viral Noncoding RNA Generated by cis-Element-Mediated Protection against 5′→3′ RNA Decay Represses both Cap-Independent and Cap-Dependent Translation
    Iwakawa, Hiro-oki
    Mizumoto, Hiroyuki
    Nagano, Hideaki
    Imoto, Yuka
    Takigawa, Kazuma
    Sarawaneeyaruk, Siriruk
    Kaido, Masanori
    Mise, Kazuyuki
    Okuno, Tetsuro
    JOURNAL OF VIROLOGY, 2008, 82 (20) : 10162 - 10174