A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer

被引:241
|
作者
Braunstein, Steve
Karpisheva, Ksenia
Pola, Carolina
Goldberg, Judith
Hochman, Tsivia
Yee, Herman
Cangiarella, Joan
Arju, Rezina
Formenti, Silvia C.
Schneider, Robert J. [1 ]
机构
[1] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
[2] NYU, Sch Med, Div Biostat, Dept Environm Med, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[4] NYU, Sch Med, Inst Canc, New York, NY 10016 USA
关键词
D O I
10.1016/j.molcel.2007.10.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational regulation is critical in cancer development and progression. Translation sustains tumor growth and development of a tumor vasculature, a process known as angiogenesis, which is activated by hypoxia. Here we first demonstrate that a majority of large advanced breast cancers overexpress translation regulatory protein 4E-BP1 and initiation factor elF4G. Using model animal and cell studies, we then show that overexpressed 4E-BP1 and elF4G orchestrate a hypoxia-activated switch from cap-dependent to cap-independent mRNA translation that promotes increased tumor angiogenesis and growth at the level of selective mRNA translation. Elevated levels of 4E-BP1 trigger hypoxia inhibition of cap-dependent mRNA translation at high-oxygen levels and, with eIF4G, increase selective translation of mRNAs containing internal ribosome entry sites (IRESs) that include key proangiogenic, hypoxia, and survival mRNAs. The switch from cap-dependent to cap-independent mRNA translation facilitates tumor angiogenesis and hypoxia responses in animal models.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 50 条
  • [1] The switch from cap-dependent to cap-independent translation reshapes the immunopeptidome of lung cancer
    Ali, Anika N.
    Weeden, Andrew D.
    Jaeger, Alex M.
    CANCER RESEARCH, 2023, 83 (08)
  • [2] Cap-dependent and cap-independent translation in eukaryotic systems
    Merrick, WC
    GENE, 2004, 332 : 1 - 11
  • [3] Expression of RUNX2 isoforms: Involvement of cap-dependent and cap-independent mechanisms of translation
    Elango, Narayanasamy
    Li, Ye
    Shivshankar, Pooja
    Katz, Michael S.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 99 (04) : 1108 - 1121
  • [4] The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription
    Czarniecki, D
    Noel, RJ
    Reznikoff, WS
    JOURNAL OF BACTERIOLOGY, 1997, 179 (02) : 423 - 429
  • [5] Effects of nitric oxide on Cap-dependent and Cap-independent insulin biosynthesis in human islets
    Fred, R. G.
    Welsh, N.
    DIABETOLOGIA, 2009, 52 : S171 - S172
  • [6] Components of cap-independent translation as novel targets in breast cancer
    Ward, T. M.
    Harrell, C.
    Liu, X.
    Pegram, M. D.
    CANCER RESEARCH, 2013, 73
  • [7] Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1-Dependent Mechanism
    Dennis, Michael D.
    Shenberger, Jeffrey S.
    Stanley, Bruce A.
    Kimball, Scot R.
    Jefferson, Leonard S.
    DIABETES, 2013, 62 (07) : 2204 - 2214
  • [8] Lost in translation: Dysregulation of cap-dependent translation and cancer
    Bjornsti, MA
    Houghton, PJ
    CANCER CELL, 2004, 5 (06) : 519 - 523
  • [9] Cap-Independent Translation in Hematological Malignancies
    Horvilleur, Emilie
    Wilson, Lindsay A.
    Bastide, Amandine
    Pineiro, David
    Poeyry, Tuija A. A.
    Willis, Anne E.
    FRONTIERS IN ONCOLOGY, 2015, 5
  • [10] Cap-Independent Protein Translation in Hematopoiesis
    Mazzola, Michael
    Zhao, Ting
    Gustafsson, Karin
    Kristiansen, Trine
    Schiroli, Giulia
    Milosevic, Jelena
    Kfoury, Youmna
    Fukushima, Tsuyoshi
    Kiem, Anna
    Sharda, Azeem
    Kato, Hiroki
    Sykes, David
    Ivanov, Pavel
    Sankaran, Vijay G.
    Scadden, David T.
    BLOOD, 2022, 140 : 1983 - 1984