MULTI-SCALE SEGMENTATION USING DEEP GRAPH CUTS: ROBUST LUNG TUMOR DELINEATION IN MVCBCT

被引:0
|
作者
Wu, Xiaodong [1 ,2 ]
Zhong, Zisha [1 ,2 ]
Buatti, John [2 ]
Bai, Junjie [1 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Radiat Oncol, Iowa City, IA 52242 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Deep graph cuts; multi-scale image segmentation; deep networks; lung tumor segmentation; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep networks have been used in a growing trend in medical image analysis with the remarkable progress in deep learning. In this paper, we formulate the multi-scale segmentation as a Markov Random Field (MRF) energy minimization problem in a deep network (graph), which can be efficiently and exactly solved by computing a minimum s-t cut in an appropriately constructed graph. The performance of the proposed method is assessed on the application of lung tumor segmentation in 38 mega-voltage cone-beam computed tomography datasets.
引用
收藏
页码:514 / 518
页数:5
相关论文
共 50 条
  • [21] MULTI-SCALE PREDICTION NETWORK FOR LUNG SEGMENTATION
    Gu, Yuchong
    Lai, Yaoming
    Xie, Peiliang
    Wei, Jun
    Lu, Yao
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 438 - 442
  • [22] Diabetic retinopathy lesion segmentation using deep multi-scale framework
    Guo, Tianjiao
    Yang, Jie
    Yu, Qi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [23] A novel framework for accurate lung segmentation using graph cuts
    Ali, Asem M.
    El-Baz, Ayman S.
    Farag, Aly A.
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 908 - +
  • [24] Robust binary segmentation of radiographic images by using multi-scale relevance function
    Palenichka, RM
    Zscherpel, U
    NONLINEAR IMAGE PROCESSING XI, 2000, 3961 : 239 - 250
  • [25] Coronary Lumen Segmentation Using Graph Cuts and Robust Kernel Regression
    Schaap, Michiel
    Neefjes, Lisan
    Metz, Coert
    van der Giessen, Alina
    Weustink, Annick
    Mollet, Nico
    Wentzel, Jolanda
    van Walsum, Theo
    Niessen, Wiro
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2009, 5636 : 528 - +
  • [26] A robust multi-scale deep learning approach for unconstrained hand detection aided by skin segmentation
    Kankana Roy
    Rajiv Ranjan Sahay
    The Visual Computer, 2022, 38 : 2801 - 2825
  • [27] A robust multi-scale deep learning approach for unconstrained hand detection aided by skin segmentation
    Roy, Kankana
    Sahay, Rajiv Ranjan
    VISUAL COMPUTER, 2022, 38 (08): : 2801 - 2825
  • [28] Automatic Brain Tumor Segmentation Using Multi-scale Features and Attention Mechanism
    Li, Zhaopei
    Shen, Zhiqiang
    Wen, Jianhui
    He, Tian
    Pan, Lin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 216 - 226
  • [29] An individual tree crown delineation method based on multi-scale segmentation of imagery
    Jing, Linhai
    Hu, Baoxin
    Noland, Thomas
    Li, Jili
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 70 : 88 - 98
  • [30] Deep learning tumor segmentation for target delineation in glioblastoma using multi-parametric MRI
    Hannisdal, M.
    Goplen, D.
    Alam, S.
    Haasz, J.
    Oltedal, L.
    Rahman, M. A.
    Rygh, C. B.
    Lie, S. A.
    Lundervold, A.
    Chekenya, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S251 - S252