Efficient solution of fluid-structure vibration problems

被引:11
|
作者
Mellado, M [1 ]
Rodríguez, R [1 ]
机构
[1] Univ Concepcion, Dipartimento Ingn Matemat, Concepcion, Chile
关键词
fluid structure interaction; elastoacoustic vibrations; pressure-potential formulation; shift-and-invert eigensolver;
D O I
10.1016/S0168-9274(00)00015-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the numerical computation of elastoacoustic vibration modes. We consider a redundant description of the fluid by means of pressure and displacement potential variables introduced by Morand and Ohayon. We analyze a finite element discretization leading to a well posed symmetric banded eigenvalue problem. An iterative algorithm requiring to solve sparse linear systems with one: degree of freedom per fluid node is obtained. We show that, for acoustic models, this method coincides with a consistent discretization of the standard potential formulation. Numerical experiments are included to validate the proposed methodology for elastoacoustic vibrations. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 50 条
  • [31] ACOUSTIC RECIPROCITY FOR FLUID-STRUCTURE PROBLEMS
    NORRIS, AN
    REBINSKY, DA
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1993, 94 (03): : 1714 - 1715
  • [32] EFFICIENT SIMULATION OF THE FLUID-STRUCTURE INTERFACE
    Gerardo de la Fraga, Luis
    Olguin-Diaz, Ernesto
    Garcia-Arreguin, Fernando
    ICINCO 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2: ROBOTICS AND AUTOMATION, 2009, : 268 - +
  • [33] Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics
    Nobile, Fabio
    Pozzoli, Matteo
    Vergara, Christian
    COMPUTERS & FLUIDS, 2013, 86 : 470 - 482
  • [34] COMPARISON BETWEEN TWO DIFFERENT DECOMPOSITIONS FOR THE SOLUTION OF FLUID-STRUCTURE INTERACTION PROBLEMS
    Degroote, Joris
    Bols, Joris
    Taelman, Liesbeth
    COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, : 1000 - 1008
  • [35] A monolithic strategy for fluid-structure interaction problems
    Jog, C. S.
    Pal, R. K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (04) : 429 - 460
  • [36] On Numerical Approximation of Fluid-Structure Interaction Problems
    Svacek, P.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 571 - 578
  • [37] DECOUPLING PROCEDURES FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    ANTONIADIS, I
    KANARACHOS, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 70 (01) : 1 - 25
  • [38] Model Studies of Fluid-Structure Interaction Problems
    Wang, X. Sheldon
    Yang, Ye
    Wu, Tao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 5 - 34
  • [39] MATHEMATICAL FORMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS
    BOUJOT, J
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (02): : 239 - 260
  • [40] An Eulerian approach for fluid-structure interaction problems
    Morinishi, Koji
    Fukui, Tomohiro
    COMPUTERS & FLUIDS, 2012, 65 : 92 - 98