A Visual Analytics Framework for Microblog Data Analysis at Multiple Scales of Aggregation

被引:15
|
作者
Zhang, Jiawei [1 ]
Ahlbrand, Benjamin [1 ]
Malik, Abish [1 ]
Chae, Junghoon [1 ]
Min, Zhiyu [2 ]
Ko, Sungahn [3 ]
Ebert, David S. [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Ulsan Natl Inst Sci & Technol, Ulsan, South Korea
关键词
ANIMATED TRANSITIONS; SOCIAL MEDIA; EXPLORATION; DESIGN;
D O I
10.1111/cgf.12920
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Real-time microblogs can be utilized to provide situational awareness during emergency and disaster events. However, the utilization of these datasets requires the decision makers to perform their exploration and analysis across a range of data scales from local to global, while maintaining a cohesive thematic context of the transition between the different granularity levels. The exploration of different information dimensions at the varied data and human scales remains to be a non-trivial task. To this end, we present a visual analytics situational awareness environment that supports the real-time exploration of microblog data across multiple scales of analysis. We classify microblogs based on a fine-grained, crisis-related categorization approach, and visualize the spatiotemporal evolution of multiple categories by coupling a spatial lens with a glyph-based visual design. We propose a transparency-based spatial context preserving technique that maintains a smooth transition between different spatial scales. To evaluate our system, we conduct user studies and provide domain expert feedback.
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [21] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [22] Performance analysis of a cloud-based network analytics system with multiple-source data aggregation
    Fowdur, Tulsi Pawan
    Babooram, Lavesh
    INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2023, 19 (05) : 698 - 733
  • [23] SEURAT: Visual analytics for the integrated analysis of microarray data
    Gribov, Alexander
    Sill, Martin
    Lueck, Sonja
    Ruecker, Frank
    Doehner, Konstanze
    Bullinger, Lars
    Benner, Axel
    Unwin, Antony
    BMC MEDICAL GENOMICS, 2010, 3
  • [24] SEURAT: Visual analytics for the integrated analysis of microarray data
    Alexander Gribov
    Martin Sill
    Sonja Lück
    Frank Rücker
    Konstanze Döhner
    Lars Bullinger
    Axel Benner
    Antony Unwin
    BMC Medical Genomics, 3
  • [25] Scalability in Visualization and Visual Analytics with Progressive Data Analysis
    Fekete, Jean-Daniel
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED VISUAL INTERFACES, AVI 2024, 2024,
  • [26] TV-MV Analytics: A visual analytics framework to explore time-varying multivariate data
    Soriano-Vargas, Aurea
    Hamann, Bernd
    de Oliveira, Maria Cristina F.
    INFORMATION VISUALIZATION, 2020, 19 (01) : 3 - 23
  • [27] A Visual Semantic Framework for Innovation Analytics
    Shalaby, Walid
    Rajshekhar, Kripa
    Zadrozny, Wlodek
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4389 - 4390
  • [28] A middleware framework to create data structures for a visual analytics object oriented approach
    Garcia, Juan
    Aguilar, Diego A. Gomez
    Gonzalez, Antonio
    Garcia, Francisco J.
    Theron, Roberto
    INTERNATIONAL JOURNAL OF KNOWLEDGE AND LEARNING, 2010, 6 (2-3) : 256 - 267
  • [29] BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data
    Ganglberger, Florian
    Swoboda, Nicolas
    Frauenstein, Lisa
    Kaczanowska, Joanna
    Haubensak, Wulf
    Buehler, Katja
    COMPUTERS & GRAPHICS-UK, 2019, 82 : 304 - 320
  • [30] DIVE: A Graph-Based Visual-Analytics Framework for Big Data
    Rysavy, Steven J.
    Bromley, Dennis
    Daggett, Valerie
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2014, 34 (02) : 26 - 37