Nonuniqueness of generalized quantum master equations for a single observable

被引:11
|
作者
Ng, Nathan [1 ]
Limmer, David T. [2 ,3 ,4 ,5 ]
Rabani, Eran [2 ,4 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[6] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 15期
关键词
Systems analysis;
D O I
10.1063/5.0068331
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
When deriving exact generalized master equations for the evolution of a reduced set of degrees of freedom, one is free to choose what quantities are relevant by specifying projection operators. However, obtaining a reduced description does not always need to be achieved through projections-one can also use conservation laws for this purpose. Such an operation should be considered as distinct from any kind of projection; that is, projection onto a single observable yields a different form of master equation compared to that resulting from a projection followed by the application of a constraint. We give a simple example to show this point and give relationships that the different memory kernels must satisfy to yield the same dynamics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Nonlinear generalized master equations: quantum case
    Los, Victor F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (01):
  • [2] Quantum observable generalized orthoalgebras
    Qiang Lei
    Weihua Liu
    Zhe Liu
    Junde Wu
    Positivity, 2020, 24 : 663 - 675
  • [3] Quantum observable generalized orthoalgebras
    Lei, Qiang
    Liu, Weihua
    Liu, Zhe
    Wu, Junde
    POSITIVITY, 2020, 24 (03) : 663 - 675
  • [4] Simulating Open Quantum System Dynamics on NISQ Computers with Generalized Quantum Master Equations
    Wang, Yuchen
    Mulvihill, Ellen
    Hu, Zixuan
    Lyu, Ningyi
    Shivpuje, Saurabh
    Liu, Yudan
    Soley, Micheline B. B.
    Geva, Eitan
    Batista, Victor S. S.
    Kais, Sabre
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (15) : 4851 - 4862
  • [5] On homogeneous generalized master equations
    Cápek, V
    Kleinekathöfer, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (26): : 5521 - 5524
  • [6] Homogeneous generalized master equations
    Los, VF
    JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (1-2) : 241 - 271
  • [7] DERIVATION OF GENERALIZED MASTER EQUATIONS
    SWENSON, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (05) : 1017 - &
  • [8] Homogeneous Generalized Master Equations
    Victor F. Los
    Journal of Statistical Physics, 2005, 119 : 241 - 271
  • [9] ON DERIVATION OF GENERALIZED MASTER EQUATIONS
    MATHEWS, PM
    PHYSICA, 1966, 32 (11-1): : 2007 - &
  • [10] Time evolution of non-Hermitian quantum systems and generalized master equations
    Scolarici, G.
    Solombrino, L.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (09) : 935 - 941