Development of MKIDs for Measurement of the Cosmic Microwave Background with the South Pole Telescope

被引:10
|
作者
Dibert, K. [1 ]
Barry, P. [2 ]
Pan, Z. [2 ]
Anderson, A. [3 ,4 ]
Benson, B. [1 ,3 ,4 ]
Chang, C. [1 ,2 ,3 ]
Karkare, K. [3 ,4 ]
Li, J. [2 ]
Natoli, T. [3 ]
Rouble, M. [5 ]
Shirokoff, E. [1 ,3 ]
Stark, A. [6 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA
[2] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA
[3] Univ Chicago, Kavli Inst Cosmol Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA
[4] Fermilab Natl Accelerator Lab, MS209,POB 500, Batavia, MS 60510 USA
[5] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[6] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
CMB; Kinetic inductance detectors; SPT; Microwave instrumentation; KINETIC INDUCTANCE DETECTORS; NOISE; SENSITIVITY;
D O I
10.1007/s10909-022-02750-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present details of the design, simulation, and initial test results of prototype detectors for the fourth-generation receiver of the South Pole Telescope (SPT). Optimized for the detection of key secondary anisotropies of the cosmic microwave background (CMB), SPT-3G+ will measure the temperature and polarization of the mm/sub-mm sky at 220, 285, and 345 GHz, beyond the peak of the CMB blackbody spectrum. The SPT-3G+ focal plane will be populated with microwave kinetic inductance detectors (MKIDs), allowing for significantly increased detector density with reduced cryogenic complexity. We present simulation-backed designs for single-color dual-polarization MKID pixels at each SPT-3G+ observation frequency. We further describe design choices made to promote resonator quality and uniformity, enabling us to maximize the available readout bandwidth. We also discuss aspects of the fabrication process that enable rapid production of these devices and present an initial dark characterization of a series of prototype devices.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [41] COSMIC MICROWAVE BACKGROUND
    WICKRAMASINGHE, NC
    NATURE, 1992, 358 (6387) : 547 - 547
  • [42] The cosmic microwave background
    Jones A.W.
    Lasenby A.N.
    Living Reviews in Relativity, 1998, 1 (1)
  • [43] THE COSMIC MICROWAVE BACKGROUND
    SILK, J
    FOURTEENTH TEXAS SYMPOSIUM ON RELATIVISTIC ASTROPHYSICS, 1989, 571 : 44 - 61
  • [44] The Cosmic Microwave Background
    Joseph Silk
    Annales Henri Poincaré, 2003, 4 : 275 - 290
  • [45] The cosmic microwave background
    Barreiro, RB
    NEW ASTRONOMY REVIEWS, 2000, 44 (03) : 179 - 204
  • [46] The Cosmic Microwave Background
    Parkinson, David
    OBSERVATORY, 2009, 129 (1209): : 95 - 96
  • [47] THE COSMIC MICROWAVE BACKGROUND
    PARTRIDGE, RB
    IAU SYMPOSIA, 1987, (124): : 31 - 53
  • [48] COSMIC MICROWAVE BACKGROUND
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, 38 (09) : 369 - 377
  • [49] The cosmic microwave background
    Lasenby, AN
    Jones, AW
    CURRENT TOPICS IN ASTROFUNDAMENTAL PHYSICS: PRIMORDIAL COSMOLOGY, 1998, 511 : 325 - 357
  • [50] THE COSMIC MICROWAVE BACKGROUND
    SILK, J
    PHYSICA SCRIPTA, 1991, T36 : 16 - 21