ON p-GROUPS WITH AUTOMORPHISM GROUPS RELATED TO THE CHEVALLEY GROUP G2(p)

被引:1
|
作者
Bamberg, John [1 ]
Freedman, Sauld D. [1 ,2 ]
Morgan, Luke [1 ,3 ,4 ]
机构
[1] Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[3] Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[4] Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, Slovenia
基金
澳大利亚研究理事会;
关键词
p-group; exterior square; G(2)(q); MAXIMAL-SUBGROUPS;
D O I
10.1017/S1446788719000466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime. We construct a p-group P of nilpotency class two, rank seven and exponent p, such that Aut(P) induces N-GL(7;p)(G2(p)) = Z(GL(7; p))G2(p) on the Frattini quotient P=Phi(P). The constructed group P is the smallest p-group with these properties, having order p(14), and when p = 3 our construction gives two nonisomorphic p-groups. To show that P satisfies the specified properties, we study the action of G(2)(q) on the octonion algebra over F-q, for each power q of p, and explore the reducibility of the exterior square of each irreducible seven-dimensional F-q[G2(q)]-module.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条