Exploiting quantum parallelism to simulate quantum random many-body systems

被引:67
|
作者
Paredes, B
Verstraete, F
Cirac, JI
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.95.140501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an algorithm that exploits quantum parallelism to simulate randomness in a quantum system. In our scheme, all possible realizations of the random parameters are encoded quantum mechanically in a superposition state of an auxiliary system. We show how our algorithm allows for the efficient simulation of dynamics of quantum random spin chains with known numerical methods. We propose an experimental realization based on atoms in optical lattices in which disorder could be simulated in parallel and in a controlled way through the interaction with another atomic species.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [32] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [33] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [34] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [35] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [36] Approach to typicality in many-body quantum systems
    Dubey, Shawn
    Silvestri, Luciano
    Finn, Justin
    Vinjanampathy, Sai
    Jacobs, Kurt
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [37] Equilibration time in many-body quantum systems
    Lezama, Talia L. M.
    Jonathan Torres-Herrera, E.
    Perez-Bernal, Francisco
    Bar Lev, Yevgeny
    Santos, Lea F.
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [38] Gappability Index for Quantum Many-Body Systems
    Yao, Yuan
    Oshikawa, Masaki
    Furusaki, Akira
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)
  • [39] Entropy Minimization for Many-Body Quantum Systems
    Romain Duboscq
    Olivier Pinaud
    Journal of Statistical Physics, 2021, 185
  • [40] EXACTLY SOLVABLE QUANTUM MANY-BODY SYSTEMS
    CARMI, G
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 22 - +