An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials

被引:46
|
作者
Liu, Tianchi [1 ,2 ]
Chen, Ji [1 ,2 ]
Li, Hailian [1 ]
Li, Kai [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resources Utilizat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
关键词
Spent lithium-ion batteries; Leaching; Cascade extraction; P227; P204; LITHIUM-ION BATTERIES; CLOSED-LOOP PROCESS; PROCESS OPTIMIZATION; LEACHING SYSTEM; MIXED TYPES; PART II; COBALT; LI; ACID; EXTRACTION;
D O I
10.1016/j.seppur.2020.116869
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The recycling of the spent lithium-ion batteries has aroused widespread concern due to the internal harmful substances and valuable metals. In this work, a novel integrated recovery process for the spent LiNi0.5Co0.2Mn0.3O2 cathode materials was proposed, which realized the complete separation of metals via leaching - cascade extraction - precipitation methods. Here, 2 mol/L (M) sulfuric acid (H2SO4) and 3 vol% (volume ratio) hydrogen peroxide (H2O2) were employed as leaching agents, resulting in the leaching rate of all metals are above 99%. Subsequently, the cascade extraction was adopted to separate lithium (Li) - nickel (Ni) cobalt (Co) - manganese (Mn) by P227 (di-(2-ethylhexyl) phosphinic acid) and P204 (di-(2-ethylhexyl) phosphoric acid) extractants, respectively. Meanwhile, their high purity solid products such as MnO2, Li2CO3, NiO and Co3O4 were also obtained depending on the precipitation procedure. The yield and purity of these metals in the final products are 96.15%/100% for Li, 91.54%/98% for Ni, 91.15%/93% for Co, and 91.56%/100% for Mn, respectively. More importantly, this simple recovery process opens an avenue in the industrial applications for separating critical metals from the spent lithium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Influence of europium doping on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries
    Zeng, Yu
    Qiu, Kehui
    Yang, Ziqi
    Zhou, Fangdong
    Xia, Li
    Bu, Yunlei
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10433 - 10438
  • [42] The intricate roles of Al2O3 on the structure and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials
    Guo, Xingbo
    Li, Shidong
    Dai, Shuhan
    Wu, Shangyin
    Liu, Dachun
    Yang, Guiling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [43] Observation of anisotropic microstructural changes during cycling in LiNi0.5Co0.2Mn0.3O2 cathode material
    Kuriyama, Hiromichi
    Saruwatari, Hidesato
    Satake, Hideki
    Shima, Amika
    Uesugi, Fumihiko
    Tanaka, Hiroki
    Ushirogouchi, Tooru
    JOURNAL OF POWER SOURCES, 2015, 275 : 99 - 105
  • [44] Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material
    Guo, Xingbo
    Song, Chenchen
    Liu, Dachun
    Yang, Guiling
    SOLID STATE SCIENCES, 2022, 131
  • [45] Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material
    Kong, Ji-Zhou
    Ren, Chong
    Tai, Guo-An
    Zhang, Xiang
    Li, Ai-Dong
    Wu, Di
    Li, Hui
    Zhou, Fei
    JOURNAL OF POWER SOURCES, 2014, 266 : 433 - 439
  • [46] Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries
    Jung, Sung-Kyun
    Gwon, Hyeokjo
    Hong, Jihyun
    Park, Kyu-Young
    Seo, Dong-Hwa
    Kim, Haegyeom
    Hyun, Jangsuk
    Yang, Wooyoung
    Kang, Kisuk
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [47] Surface Modified Copper Improves the Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material
    Dai, Shihang
    Zhang, Jian
    Li, Xuetian
    Shao, Zhongcai
    Liu, Zhijiang
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 98 (04) : 777 - 786
  • [48] Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries
    Xi, Yukun
    Liu, Yan
    Zhang, Dengke
    Jin, Shuangling
    Zhang, Rui
    Jin, Minglin
    SOLID STATE IONICS, 2018, 327 : 27 - 31
  • [49] Effect of Hydrogen Peroxide on the Recovery of Valuable Metals from Spent LiNi0.6Co0.2Mn0.2O2 Batteries
    Cheng, Xiangyu
    Guo, Guanghui
    Cheng, Yukun
    Liu, Mingxiu
    Ji, Jiaxing
    ENERGY TECHNOLOGY, 2022, 10 (04)
  • [50] Preparation of LiNi0.5Co0.2Mn0.3O2 by freeze-drying method
    Li, Hao
    Dai, Yongqi
    Li, Xuetian
    Shao, Zhongcai
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 629