DELIGNIFICATION OF SWITCHGRASS CULTIVARS FOR BIOETHANOL PRODUCTION

被引:0
|
作者
Xu, Jiele [1 ]
Chen, Ye [2 ]
Cheng, Jay J. [1 ]
Sharma-Shivappa, Ratna R. [1 ]
Burns, Joseph C. [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Biol & Agr Engn, Raleigh, NC 27695 USA
[2] Novozymes N Amer Inc, Franklinton, NC 27525 USA
[3] N Carolina State Univ, USDA ARS, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA
来源
BIORESOURCES | 2011年 / 6卷 / 01期
关键词
Delignification; Lignocellulose; Modeling; Severity; Sodium hydroxide; ENZYMATIC SACCHARIFICATION; CORN STOVER; PRETREATMENT; DIGESTIBILITY; REGISTRATION; CELLULASE; SEVERITY; STALKS; LIGNIN; SUGAR;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Three switchgrass cultivars ('Performer', 'BoMaster', and 'Colony' switchgrass) were delignified using NaOH at varying concentrations and residence times at 121 degrees C for improved sugar production in enzymatic hydrolysis. Because of its greater carbohydrate/lignin ratio and the more substantial lignin reduction upon alkaline attack, 'Performer' switchgrass gave greater sugar productions under all the pretreatment conditions investigated. Maximum sugar production from 'Performer' was 425 mg/g raw biomass, which was achieved at 1% NaOH and 0.5 h. Sugar production increased with the improvement of delignification until the lignin reduction reached 30%. The more severe pretreatment conditions, which led to greater lignin reductions, did not favor the increase of sugar production because of greater solid losses. Linear models were proven effective in correlating a modified severity parameter log(M-o) to lignin reduction and sugar production of 'Performer' switchgrass.
引用
收藏
页码:707 / 720
页数:14
相关论文
共 50 条
  • [41] A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation
    Regis, Francesco
    Monteverde, Alessandro Hugo Antonio
    Fino, Debora
    ENERGY, 2023, 274
  • [42] Infestation Rates and Tiller Morphology Effects by the Switchgrass Moth on Six Cultivars of Switchgrass
    Torrez, Veronica Calles
    Johnson, Paul J.
    Boe, Arvid
    BIOENERGY RESEARCH, 2013, 6 (02) : 808 - 812
  • [43] Infestation Rates and Tiller Morphology Effects by the Switchgrass Moth on Six Cultivars of Switchgrass
    Veronica Calles Torrez
    Paul J. Johnson
    Arvid Boe
    BioEnergy Research, 2013, 6 : 808 - 812
  • [44] Changes in Lignin Chemistry of Switchgrass due to Delignification by Sodium Hydroxide Pretreatment
    Jung, Woochul
    Savithri, Dhanalekshmi
    Sharma-Shivappa, Ratna
    Kolar, Praveen
    ENERGIES, 2018, 11 (02)
  • [45] Sequential pretreatment of sugarcane bagasse by alkali and organosolv for improved delignification and cellulose saccharification by chimera and cellobiohydrolase for bioethanol production
    Priyanka Nath
    Premeshworii Devi Maibam
    Shweta Singh
    Vikky Rajulapati
    Arun Goyal
    3 Biotech, 2021, 11
  • [46] Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production
    Rocha, G. J. M.
    Goncalves, A. R.
    Oliveira, B. R.
    Olivares, E. G.
    Rossell, C. E. V.
    INDUSTRIAL CROPS AND PRODUCTS, 2012, 35 (01) : 274 - 279
  • [47] Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production
    De La Torre, Maria
    Martin-Sampedro, Raquel
    Fillat, Ursula
    Eugenio, Maria E.
    Blanquez, Alba
    Hernandez, Manuel
    Arias, Maria E.
    Ibarra, David
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2017, 44 (11) : 1561 - 1573
  • [48] Sequential pretreatment of sugarcane bagasse by alkali and organosolv for improved delignification and cellulose saccharification by chimera and cellobiohydrolase for bioethanol production
    Nath, Priyanka
    Maibam, Premeshworii Devi
    Singh, Shweta
    Rajulapati, Vikky
    Goyal, Arun
    3 BIOTECH, 2021, 11 (02)
  • [49] Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production (vol 20C, 101263, 2019)
    Niju, S.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2021, 36
  • [50] Switchgrass for bioethanol and other value-added applications: A review
    Keshwani, Deepak R.
    Cheng, Jay J.
    BIORESOURCE TECHNOLOGY, 2009, 100 (04) : 1515 - 1523