Phase behavior of condensate gas and CO2 / CH4 re-injection performance on its retrograde condensation

被引:3
|
作者
Wang, Jie [1 ,2 ,3 ]
Luo, Xu [1 ,2 ]
Xu, Hualei [1 ,2 ]
Jiang, Houshun [1 ,2 ]
Nie, Fajian [1 ,2 ]
机构
[1] Yangtze Univ, Cooperat Innovat Ctr Unconvent Oil & Gas, Wuhan, Peoples R China
[2] Yangtze Univ, Hubei Key Lab Drilling & Prod Engn Oil & Gas, Wuhan, Peoples R China
[3] China Univ Petr, State Key Lab Petr Resource & Prospecting, Beijing, Peoples R China
关键词
Condensate gas; Visualization; Condensation phenomenon; Retrograde condensation; Gas reinjection; OIL; PETROLEUM; STATE;
D O I
10.1016/j.arabjc.2022.104065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wenchang A Depression in Pearl River Mouth Basin is the largest hydrocarbon generating depression in the west of the area. After more than 30 years of exploitation, a large amount of gas condensate has been produced near the wellbore, which will cause gas condensate damage to the reservoir. It is planned to reinject the self-produced gas from Well WC9-2-X and the gas transported from the WC14-3 gas field to relieve the condensate damage in the near-wellbore area by means of retrograde condensation. In this article, the phase state change process of condensate gas in Well WC9-2-X with temperature and pressure was firstly investigated, and then the retrograde condensation effect of two types of gas on condensate was investigated. The research shows that when the reservoir temperature is 158.80 degrees C, the dew point pressure of condensate gas is 20.71 MPa, and the maximum amount of condensate is 1.28% (P = 9.01 MPa). Although Wenchang 9-2 is a low condensate reservoir, in the process of depressurization and production over the years, gas condensate has gradually accumulated, resulting in a large amount of gas condensate near the wellbore. With the increase of the gas re-injection amount, the two types of gas have a significant effect on the retrograde condensation of the gas condensate. From the variation trend of the gas and oil density released by the retrograde condensation, it can be seen that the re-injection gas preferentially dissolves the light components in the condensate, and then gradually dissolves the heavy components. The self-produced gas (gas No. 1) of Well WC9-2-X is dominated by CH4 (78.33 mol%), and the CO2/CH4 contents in the input waste gas (gas No. 2) of the WC14- gas field are 42.50 mol%/41.60 mol%, respectively. The retrograde condensation effect of gas No. 2 is better than gas No. 1, mainly because the content of CO2 in gas No. 2 is high, and it is easier to achieve the effect of miscible dissolution of condensate when mixed with condensate. It is recommended that gas No.2 should be preferentially used in WC9-2-X well for reinjection of retrograde condensation to relieve condensate damage. This article provides theoretical support for gas re-injection to relieve condensate damage in Wenchang 9-2 gas field, and has important significance for long-term exploitation of condensate gas reservoir. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Molecular simulation of free CO2 injection on the coal containing CH4 structure and gas replacement
    Ji, Bingnan
    Pan, Hongyu
    Pan, Mingyue
    Zhou, Yuxuan
    Pang, Mingkun
    Wang, Kang
    Zhang, Tianjun
    Zhang, Hang
    FUEL, 2024, 377
  • [32] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [33] Competitive adsorption between CO2 and CH4 in tight sandstone and its influence on CO2-injection enhanced gas recovery (EGR)
    Ding, Jingchen
    Yan, Changhui
    Wang, Guozhuang
    He, Yongming
    Zhao, Ronghua
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 113
  • [34] Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream
    Guerin, Frederic
    Abril, Gwenael
    Serca, Dominique
    Delon, Claire
    Richard, Sandrine
    Delmas, Robert
    Tremblay, Alain
    Varfalvy, Louis
    JOURNAL OF MARINE SYSTEMS, 2007, 66 (1-4) : 161 - 172
  • [35] Gas Membranes for CO2/CH4 (Biogas) Separation: A Review
    Jeon, Yong-Woo
    Lee, Dong-Hoon
    ENVIRONMENTAL ENGINEERING SCIENCE, 2015, 32 (02) : 71 - 85
  • [36] Insights into the structure of mixed CO2/CH4 in gas hydrates
    Everett, S. Michelle
    Rawn, Claudia J.
    Chakoumakos, Bryan C.
    Keefer, David J.
    Huq, Ashfia
    Phelps, Tommy J.
    AMERICAN MINERALOGIST, 2015, 100 (5-6) : 1203 - 1208
  • [37] Reformation and replacement of CO2 and CH4 gas hydrates.
    Komai, T
    Kawamura, T
    Yamamoto, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U400 - U400
  • [38] Solubility of CO2/CH4 gas mixtures in ionic liquids
    Ramdin, Mahinder
    Amplianitis, Aris
    de Loos, Theo W.
    Vlugt, Thijs J. H.
    FLUID PHASE EQUILIBRIA, 2014, 375 : 134 - 142
  • [39] Dynamics of reformation and replacement of CO2 and CH4 gas hydrates
    Komai, T
    Yamamo, Y
    Ohga, K
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 272 - 280
  • [40] Replacement of CH4 in Hydrate in Porous Sediments with Liquid CO2 Injection
    Zhang, Yu
    Xiong, Li-Jun
    Li, Xiao-Sen
    Chen, Zhao-Yang
    Xu, Chun-Gang
    CHEMICAL ENGINEERING & TECHNOLOGY, 2014, 37 (12) : 2022 - 2029