Lorentz Hypersurfaces in Pseudo-Euclidean Space E15

被引:0
|
作者
Gupta, Ram Shankar [1 ]
Kumari, Deepika [1 ]
Ahmad, Sharfuddin [2 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Basic & Appl Sci, Sect 16C, New Delhi 110078, India
[2] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
关键词
Pseudo-Euclidean space; Biharmonic submanifolds; Mean curvature vector; SATISFYING DELTA(H)OVER-RIGHT-ARROW; SURFACES;
D O I
10.1007/s40010-018-0542-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lorentz hypersurfaces M4 1 is studied in E5 1 with non-diagonal shape operators having characteristic equation oy kTHORN2 oy k3THORNoy k4THORN or oy kTHORN3 oy k4THORN or ooy kTHORN2 thorn l2THORNoy k3THORNoy k4THORN. It is proved that if the mean curvature vector field H of Lorentz hypersurfaces M4 1 in E5 1 with non-diagonal shape operators satisfies the equation MH 1/4 aH (for a constant a), then M4 1 has constant mean curvature.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条