Bootstrap-after-bootstrap prediction intervals for autoregressive models

被引:39
|
作者
Kim, JH [1 ]
机构
[1] La Trobe Univ, Sch Business, Bundoora, Vic 3083, Australia
关键词
bias correction; interval forecasting; nonnormality; unit roots;
D O I
10.1198/07350010152472670
中图分类号
F [经济];
学科分类号
02 ;
摘要
The use of the Bonferroni prediction interval based on the bootstrap-after-bootstrap is proposed for autoregressive (AR) models. Monte Carlo simulations are conducted using a number of AR models including stationary, unit-root, and near-unit-root processes. The major finding is that the bootstrap-after-bootstrap provides a superior small-sample alternative to asymptotic and standard bootstrap prediction intervals. The latter are often too narrow, substantially underestimating future uncertainty, especially when the model has unit roots or near unit roots. Bootstrap-after-bootstrap prediction intervals are found to provide accurate and conservative assessment of future uncertainty under nearly all circumstances considered.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条
  • [31] Bootstrap prediction regions for multivariate autoregressive processes
    Grigoletto M.
    Statistical Methods and Applications, 2005, 14 (2): : 179 - 207
  • [32] Prediction intervals for time series models with trend via sieve bootstrap
    Chlapinski, Grzegorz
    Rozanski, Roman
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (02) : 221 - 236
  • [33] PREDICTION INTERVALS AND REGIONS FOR MULTIVARIATE TIME SERIES MODELS WITH SIEVE BOOTSTRAP
    Rozanski, Roman
    Chlapinski, Grzegorz
    Hlawka, Marcin
    Jamroz, Krzysztof
    Kawecki, Maciej
    Zagdanski, Adam
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (02): : 317 - 357
  • [34] Bootstrap-after-Bootstrap Model Averaging for Reducing Model Uncertainty in Model Selection for Air Pollution Mortality Studies
    Roberts, Steven
    Martin, Michael A.
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (01) : 131 - 136
  • [35] Erratum to: Bootstrap prediction intervals in beta regressions
    Patrícia L. Espinheira
    Silvia L. P. Ferrari
    Francisco Cribari-Neto
    Computational Statistics, 2017, 32 : 1777 - 1777
  • [36] Prediction intervals for FARIMA processes by bootstrap methods
    Bisaglia, L
    Grigoletto, M
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 68 (02) : 185 - 201
  • [37] BLOCK BOOTSTRAP PREDICTION INTERVALS FOR GARCH PROCESSES
    Beyaztas, Beste Hamiye
    Beyaztas, Ufuk
    REVSTAT-STATISTICAL JOURNAL, 2020, 18 (04) : 397 - 414
  • [38] Kriging Prediction Intervals Based on Semiparametric Bootstrap
    Lina Schelin
    Sara Sjöstedt-de Luna
    Mathematical Geosciences, 2010, 42 : 985 - 1000
  • [39] Bootstrap prediction intervals for autoregressions: some alternatives
    Grigoletto, M
    INTERNATIONAL JOURNAL OF FORECASTING, 1998, 14 (04) : 447 - 456
  • [40] Kriging Prediction Intervals Based on Semiparametric Bootstrap
    Schelin, Lina
    Sjostedt-de Luna, Sara
    MATHEMATICAL GEOSCIENCES, 2010, 42 (08) : 985 - 1000