Additive Schwarz preconditioners for C0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates

被引:5
|
作者
Brenner, Susanne C. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
Wang, Kening [3 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Univ North Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
基金
美国国家科学基金会;
关键词
additive Schwarz preconditioners; C-0 interior penalty method; fourth-order variational inequality; obstacle problem for clamped Kirchhoff plates; CONVERGENCE RATE ANALYSIS; PRIMAL-DUAL STRATEGY; DECOMPOSITION METHODS; INEQUALITIES;
D O I
10.1002/num.22834
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete variational inequalities resulting from C0 interior penalty methods for the obstacle problem of clamped Kirchhoff plates can be solved by the primal-dual active set algorithm. We develop and analyze additive Schwarz preconditioners for the auxiliary systems that appear in each iteration of the primal-dual active set algorithm. Numerical results corroborate our theoretical estimates.
引用
收藏
页码:102 / 117
页数:16
相关论文
共 50 条
  • [21] A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates
    Brenner, Susanne C.
    Sung, Li-yeng
    Zhang, Hongchao
    Zhang, Yi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 : 31 - 42
  • [22] C0 interior penalty methods for an elliptic state-constrained optimal control problem with Neumann boundary condition
    Brenner, Susanne C.
    Sung, Li-yeng
    Zhang, Yi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 212 - 232
  • [23] C0 interior penalty methods for an elliptic distributed optimal control problem with general tracking and pointwise state constraints
    Brenner, Susanne C.
    Jeong, Seonghee
    Sung, Li-yeng
    Tan, Zhiyu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 155 : 80 - 90
  • [24] A C0 Interior Penalty Finite Element Method for Flexoelectricity
    Jordi Ventura
    David Codony
    Sonia Fernández-Méndez
    Journal of Scientific Computing, 2021, 88
  • [25] A Compact C0 Discontinuous Galerkin Method for Kirchhoff Plates
    An, Rong
    Huang, Xuehai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1265 - 1287
  • [26] A new C0 discontinuous Galerkin method for Kirchhoff plates
    Huang, Jianguo
    Huang, Xuehai
    Han, Weimin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) : 1446 - 1454
  • [27] AN A PRIORI ERROR ANALYSIS OF A STRAIN GRADIENT MODEL USING C0 INTERIOR PENALTY METHODS
    Baldonedo, Jacobo
    Fernandez, Jose R.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2303 - 2312
  • [28] FINITE ELEMENT METHODS FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED PLATES
    Brenner, Susanne C.
    Sung, Li-Yeng
    Zhang, Yi
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1247 - 1262
  • [29] C0 INTERIOR PENALTY METHODS FOR AN ELLIPTIC DISTRIBUTED OPTIMAL CONTROL PROBLEM ON NONCONVEX POLYGONAL DOMAINS WITH POINTWISE STATE CONSTRAINTS
    Brenner, Susanne C.
    Gedicke, Joscha
    Sung, Li-Yeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1758 - 1785
  • [30] A C0 interior penalty method for the phase field crystal equation
    Diegel, Amanda E.
    Sharma, Natasha S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2510 - 2537