Adaptive stratified Monte Carlo algorithm for numerical computation of integrals

被引:3
|
作者
Sayah, Toni [1 ]
机构
[1] Univ St Joseph, Fac Sci, Unite Rech Math & Modelisat, Lab Math & Applicat, BP 11-514, Riad El Solh 11072050, Beyrouth, Lebanon
关键词
Monte Carlo method; Optimal allocation; Adaptive method; Stratification;
D O I
10.1016/j.matcom.2018.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we aim to compute numerical approximations of the integral of a function by using an adaptive Monte Carlo algorithm. We propose a stratified sampling algorithm based on an iterative method which splits the strata following some quantities called indicators which indicate where the variance takes relative large values. The stratification method is based on the optimal allocation strategy in order to decrease the variance from one iteration to another. Numerical experiments show and confirm the efficiency of our algorithm. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.Y. All rights reserved.
引用
收藏
页码:143 / 158
页数:16
相关论文
共 50 条
  • [31] An adaptive Monte Carlo integration algorithm with general division approach
    Alrefaei, Mahmoud H.
    Abdul-Rahman, Houssam M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (01) : 49 - 59
  • [32] MULTILEVEL MONTE CARLO WITH NUMERICAL SMOOTHING FOR ROBUST AND EFFICIENT COMPUTATION OF PROBABILITIES AND DENSITIES
    Bayer, Christian
    Hammouda, Chiheb Ben
    Ltempone, Raul
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : A1514 - A1548
  • [33] Topological Reinforcement Adaptive Algorithm (TOREADA) Application to the Alerting of Convulsive Seizures and Validation with Monte Carlo Numerical Simulations
    Kalitzin, Stiliyan
    ALGORITHMS, 2024, 17 (11)
  • [34] A COMBINED MONTE CARLO AND QUASI-MONTE CARLO METHOD FOR ESTIMATING MULTIDIMENSIONAL INTEGRALS
    Rosca, Natalia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 125 - 140
  • [35] Monte Carlo and Quasimontecarlo evaluation of molecular integrals
    Huertas, RR
    Macias, RI
    Cuenca, DZ
    Núñez, MF
    ANALES DE QUIMICA-INTERNATIONAL EDITION, 1998, 94 (4-5): : 201 - 205
  • [36] Macrostate dissection of thermodynamic Monte Carlo integrals
    Church, BW
    Ulitsky, A
    Shalloway, D
    MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 : 273 - 310
  • [37] From Monte Carlo to quantum computation
    Heinrich, S
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 219 - 230
  • [38] Stochastic approximation in Monte Carlo computation
    Liang, Faming
    Liu, Chuanhai
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 305 - 320
  • [39] Monte Carlo simulation of quantum computation
    Cerf, NJ
    Koonin, SE
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 143 - 152
  • [40] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685