Advanced capabilities for materials modelling with QUANTUM ESPRESSO

被引:6354
|
作者
Giannozzi, P. [1 ]
Andreussi, O. [2 ,10 ,11 ]
Brumme, T. [3 ]
Bunau, O. [4 ]
Nardelli, M. Buongiorno [5 ,6 ]
Calandra, M. [4 ]
Car, R. [7 ]
Cavazzoni, C. [8 ]
Ceresoli, D. [9 ]
Cococcioni, M. [10 ,11 ]
Colonna, N. [10 ,11 ]
Carnimeo, I. [1 ]
Dal Corso, A. [12 ,34 ]
de Gironcoli, S. [12 ,34 ]
Delugas, P. [12 ]
DiStasio, R. A., Jr. [13 ]
Ferretti, A. [14 ]
Floris, A. [15 ]
Fratesi, G. [16 ]
Fugallo, G. [17 ]
Gebauer, R. [18 ]
Gerstmann, U. [19 ]
Giustino, F. [20 ]
Gorni, T. [4 ,12 ]
Jia, J. [13 ]
Kawamura, M. [21 ]
Ko, H-Y [7 ]
Kokalj, A. [22 ]
Kucukbenli, E. [12 ]
Lazzeri, M. [4 ]
Marsili, M. [23 ]
Marzari, N.
Mauri, F. [24 ]
Nguyen, N. L. [10 ,11 ]
Nguyen, H-V [25 ]
Otero-de-la-Roza, A. [26 ]
Paulatto, L. [4 ]
Ponce, S. [20 ]
Rocca, D. [27 ,28 ]
Sabatini, R. [29 ]
Santra, B. [7 ]
Schlipf, M. [20 ]
Seitsonen, A. P. [30 ,31 ]
Smogunov, A. [32 ]
Timrov, I. [10 ,11 ]
Thonhauser, T. [33 ]
Umari, P. [23 ,34 ]
Vast, N. [35 ]
Wu, X. [36 ]
Baroni, S. [12 ]
机构
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany
[4] UPMC Univ Paris 06, Sorbonne Univ, MNHN, IRD,IMPMC,UMR CNRS 7590, 4 Pl Jussieu, F-75005 Paris, France
[5] Univ North Texas, Dept Phys, Denton, TX USA
[6] Univ North Texas, Dept Chem, Denton, TX USA
[7] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[8] CINECA, Via Magnanelli 6-3, I-40033 Bologna, Italy
[9] CNR, Inst Mol Sci & Technol ISTM, I-20133 Milan, Italy
[10] Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[11] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
[12] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[13] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[14] CNR Ist Nanosci, I-42125 Modena, Italy
[15] Univ Lincoln, Coll Sci, Sch Math & Phys, Lincoln, England
[16] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[17] Ecole Polytech, Lab Solides Irradies, ETSF, F-91128 Palaiseau, France
[18] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
[19] Univ Paderborn, Dept Phys, D-33098 Paderborn, Germany
[20] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[21] Inst Solid State Phys, Kashiwa, Chiba, Japan
[22] Jozef Stefan Inst, Dept Phys & Organ Chem, Jamova 39, Ljubljana 1000, Slovenia
[23] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[24] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[25] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam
[26] Univ British Columbia, Dept Chem, Kelowna, BC V1V IV7, Canada
[27] Univ Lorraine, CRM2, UMR 7036, F-54506 Vandoeuvre Les Nancy, France
[28] CNRS, CRM2, UMR 7036, F-54506 Vandoeuvre Les Nancy, France
[29] Orionis Biosci, Newton, MA 02466 USA
[30] Univ Zurich, Inst Chim, CH-8057 Zurich, Switzerland
[31] Ecole Normale Super, Dept Chim, F-75005 Paris, France
[32] Univ Paris Saclay, CNRS, CEA, SPEC, F-91191 Gif Sur Yvette, France
[33] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA
[34] CNR, Ist Officina Mat, CNR IOM DEMOCRITOS, Rome, Italy
[35] Univ Paris Saclay, CEA DRF IRAMIS, Ecole Polytech, Lab Solides Irradies,CNRS UMR 7642, F-91120 Palaiseau, France
[36] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
基金
英国工程与自然科学研究理事会;
关键词
density-functional theory; density-functional perturbation theory; many-body perturbation theory; first-principles simulations; DENSITY-FUNCTIONAL THEORY; INITIO MOLECULAR-DYNAMICS; LOCAL ATOMIC ENVIRONMENT; ELECTRONIC-STRUCTURE; GREENS-FUNCTION; OPTICAL-PROPERTIES; ENERGY; SPECTRA; ALGORITHMS; SURFACE;
D O I
10.1088/1361-648X/aa8f79
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
QUANTUM ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. QUANTUM ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Editorial: New Frontiers in Multiscale Modelling of Advanced Materials
    Taioli, Simone
    Dapor, Maurizio
    Pugno, Nicola M.
    FRONTIERS IN MATERIALS, 2015, 2
  • [22] Modelling and Optimizing Structural Behavior of Advanced Materials for Aerospace
    Citarella, Roberto G.
    Berto, Filippo
    de Castro, Paulo M. S. T.
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2018, 2018
  • [23] QUANTUM ESPRESSO implementation of the RPA-based functional
    Rosado, Angel
    Benites, Mario
    Manousakis, Efstratios
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 312
  • [24] Quantum ESPRESSO: One Further Step toward the Exascale
    Carnimeo, Ivan
    Affinito, Fabio
    Baroni, Stefano
    Baseggio, Oscar
    Bellentani, Laura
    Bertossa, Riccardo
    Delugas, Pietro Davide
    Ruffino, Fabrizio Ferrari
    Orlandini, Sergio
    Spiga, Filippo
    Giannozzi, Paolo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (20) : 6992 - 7006
  • [25] Understanding and prediction of quantum materials via modelling and computation
    Dasgupta, Tanusri Saha
    BULLETIN OF MATERIALS SCIENCE, 2021, 44 (04)
  • [26] Understanding and prediction of quantum materials via modelling and computation
    TANUSRI SAHA DASGUPTA
    Bulletin of Materials Science, 2021, 44
  • [27] Implementation and Benchmarking of New FFT Libraries in Quantum ESPRESSO
    Stankovic, Dusan
    Jovanovic, Petar
    Jovic, Aleksandar
    Slavnic, Vladimir
    Vudragovic, Dusan
    Balaz, Antun
    HIGH-PERFORMANCE COMPUTING INFRASTRUCTURE FOR SOUTH EAST EUROPE'S RESEARCH COMMUNITIES: RESULTS OF THE HP-SEE USER FORUM 2012, 2014, 2 : 155 - 162
  • [28] ESPResSo++2.0: Advanced methods for multiscale molecular simulation
    Guzman, Horacio V.
    Tretyakov, Nikita
    Kobayashi, Hideki
    Fogarty, Aoife C.
    Kreis, Karsten
    Krajniak, Jakub
    Junghans, Christoph
    Kremer, Kurt
    Stuehn, Torsten
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 238 : 66 - 76
  • [29] Advanced materials modelling via fractional calculus: challenges and perspectives
    Failla, Giuseppe
    Zingales, Massimiliano
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2172):
  • [30] Modelling the abrasive flow machining process on advanced ceramic materials
    Uhlmann, Eckart
    Mihotovic, Vanja
    Coenen, Andre
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (20) : 6062 - 6066