Improving the Speed of MRI with Artificial Intelligence

被引:53
|
作者
Johnson, Patricia M. [1 ]
Recht, Michael P. [1 ]
Knoll, Florian [1 ]
机构
[1] NYU Langone Hlth, Radiol Dept, Ctr Biomed Imaging, 650 1st Ave, New York, NY 10016 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
magnetic resonance imaging; accelerated imaging; artificial intelligence; machine learning; NETWORK; RECONSTRUCTION;
D O I
10.1055/s-0039-3400265
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is a leading image modality for the assessment of musculoskeletal (MSK) injuries and disorders. A significant drawback, however, is the lengthy data acquisition. This issue has motivated the development of methods to improve the speed of MRI. The field of artificial intelligence (AI) for accelerated MRI, although in its infancy, has seen tremendous progress over the past 3 years. Promising approaches include deep learning methods for reconstructing undersampled MRI data and generating high-resolution from low-resolution data. Preliminary studies show the promise of the variational network, a state-of-the-art technique, to generalize to many different anatomical regions and achieve comparable diagnostic accuracy as conventional methods. This article discusses the state-of-the-art methods, considerations for clinical applicability, followed by future perspectives for the field.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [31] Artificial intelligence: Improving the scheduling of process manufacturing
    Ball, Gregory R.
    Ball, Byron R.
    Wire Journal International, 2002, 35 (10): : 83 - 85
  • [32] Artificial Intelligence in Cardiac MRI: Is Clinical Adoption Forthcoming?
    Fotaki, Anastasia
    Puyol-Anton, Esther
    Chiribiri, Amedeo
    Botnar, Rene
    Pushparajah, Kuberan
    Prieto, Claudia
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8
  • [33] Semantic Communications With Artificial Intelligence Tasks: Reducing Bandwidth Requirements and Improving Artificial Intelligence Task Performance
    YANG, Y. A. N. G.
    GUO, C. A. I. L. I.
    LIU, F. A. N. G. F. A. N. G.
    SUN, L. U. N. A. N.
    LIU, C. H. U. A. N. H. O. N. G.
    SUN, Q. I. Z. H. E. N. G.
    IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2023, 17 (03) : 4 - 13
  • [34] Applications of Artificial Intelligence and Machine Learning in Spine MRI
    Lee, Aric
    Ong, Wilson
    Makmur, Andrew
    Ting, Yong Han
    Tan, Wei Chuan
    Lim, Shi Wei Desmond
    Low, Xi Zhen
    Tan, Jonathan Jiong Hao
    Kumar, Naresh
    Hallinan, James T. P. D.
    BIOENGINEERING-BASEL, 2024, 11 (09):
  • [35] Human-in-the-Loop Artificial Intelligence in Cardiac MRI
    Ambale-Venkatesh, Bharath
    Lima, Joao A. C.
    RADIOLOGY, 2022, 305 (01) : 79 - 80
  • [36] Multimodal MRI and artificial intelligence: Shaping the future of glioma
    Yan, Yiqin
    Yang, Chenxi
    Chen, Wensheng
    Jia, Zhaoxing
    Zhou, Haiying
    Di, Zhong
    Xu, Longbiao
    JOURNAL OF NEURORESTORATOLOGY, 2025, 13 (02):
  • [37] Artificial intelligence development for detecting prostate cancer in MRI
    Chalida Aphinives
    Potchavit Aphinives
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [38] Artificial intelligence helps speed diagnosis of genetic diseases
    Dengler, V. L.
    GENETICS IN MEDICINE, 2019, 21 (07) : 1466 - 1466
  • [39] Artificial Intelligence Applied to Breast MRI for Improved Diagnosis
    Jiang, Yulei
    Edwards, Alexandra, V
    Newstead, Gillian M.
    RADIOLOGY, 2021, 298 (01) : 38 - 46
  • [40] Artificial intelligence development for detecting prostate cancer in MRI
    Aphinives, Chalida
    Aphinives, Potchavit
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):