Analysis of cosolvent effect on supercritical carbon dioxide extraction for α-pinene and 1,8-cineole

被引:11
|
作者
Shimoyama, Yusuke [1 ]
Tokumoto, Hiroki [2 ]
Matsuno, Takumi [2 ]
Iwai, Yoshio [2 ]
机构
[1] Tokyo Inst Technol, Dept Chem Engn, Meguro Ku, Tokyo 1528550, Japan
[2] Kyushu Univ, Dept Chem Engn, Fac Engn, Nishi Ku, Fukuoka 8190395, Japan
来源
CHEMICAL ENGINEERING RESEARCH & DESIGN | 2010年 / 88卷 / 12A期
关键词
Extraction; Supercritical fluid; Cosolvent effect; Eucalyptus oil; VAPOR-LIQUID-EQUILIBRIA; ESSENTIAL OIL; PHASE-EQUILIBRIA; SOLUBILITY; ETHANOL; WATER; TEMPERATURES; MONOTERPENES;
D O I
10.1016/j.cherd.2010.04.009
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The solubilities of alpha-pinene and 1,8-cineole in supercritical carbon dioxide with and without cosolvent were measured by using a circulation type apparatus coupled with an on-line Fourier transform infrared (FT-IR) spectroscope at 323 K and 8.0 MPa. The cosolvents interested in this work were ethanol, water, acetone and hexane. The solubilities were measured under vapor-liquid two phases. The effects of cosolvents on the solubilities and selectivities of alpha-pinene and 1,8-cineole in supercritical CO2 were investigated. The selectivities at feed concentration of cosolvent of 0.056 mol L-1 were increased 1.23 times by ethanol and decreased 0.82 times by hexane. Peng-Robinson equation of state with a quadratic mixing rule was used for correlations of the solubilities for alpha-pinene and 1,8-cineole in supercritical CO2 with and without cosolvent. The correlated results reproduce the experimental data of cosolvent effects on the solubilities and selectivities of alpha-pinene and 1,8-cineole in supercritical CO2. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1563 / 1568
页数:6
相关论文
共 50 条
  • [21] Enhanced chlorhexidine skin penetration with 1,8-cineole
    Casey, A. L.
    Karpanen, T. J.
    Conway, B. R.
    Worthington, T.
    Nightingale, P.
    Waters, R.
    Elliott, T. S. J.
    BMC INFECTIOUS DISEASES, 2017, 17
  • [22] REARRANGEMENT OF CARBONYL GROUP IN 1,8-CINEOLE NUCLEUS
    BONDAVALLI, F
    SCHENONE, P
    RANISE, A
    LANTERI, S
    CHIMICA & L INDUSTRIA, 1979, 61 (10): : 770 - 770
  • [23] The Fate of 1,8-cineole as a Chemical Penetrant: A Review
    Dao, Ligema
    Dong, Yu
    Song, Lin
    Sa, Chula
    CURRENT DRUG DELIVERY, 2024, 21 (05) : 697 - 708
  • [24] THE OXIDATION OF 1,8-CINEOLE BY PSEUDOMONAS-FLAVA
    CARMAN, RM
    MACRAE, IC
    PERKINS, MV
    AUSTRALIAN JOURNAL OF CHEMISTRY, 1986, 39 (11) : 1739 - 1746
  • [25] Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol)
    Rocha Caldas, Germana Freire
    da Silva Oliveira, Alisson Rodrigo
    Araujo, Alice Valenca
    Lopes Lafayette, Simone Sette
    Albuquerque, Giwellington Silva
    Silva-Neto, Jacinto da Costa
    Costa-Silva, Joao Henrique
    Ferreira, Fabiano
    Martins da Costa, Jose Galberto
    Wanderley, Almir Goncalves
    PLOS ONE, 2015, 10 (08):
  • [26] Eucalyptus camaldulensis:: volatiles from immature flowers and high production of 1,8-cineole and β-pinene by in vitro cultures
    Giamakis, A
    Kretsi, O
    Chinou, I
    Spyropoulos, CG
    PHYTOCHEMISTRY, 2001, 58 (02) : 351 - 355
  • [27] Biotransformation of 1,8-cineole by human liver microsomes
    Miyazawa, M
    Shindo, M
    NATURAL PRODUCT LETTERS, 2001, 15 (01): : 49 - 53
  • [28] Photosynthetic 1,8-cineole production using cyanobacteria
    Sakamaki, Yutaka
    Ono, Mizuki
    Shigenari, Nozomi
    Chibazakura, Taku
    Shimomura, Kenji
    Watanabe, Satoru
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2023, 87 (05) : 563 - 568
  • [29] 1,8-CINEOLE FROM ALPHA-TERPINEOL
    COXON, JM
    HARTSHOR.MP
    MITCHELL, JW
    RICHARDS, KE
    CHEMISTRY & INDUSTRY, 1968, (20) : 652 - &
  • [30] Enhanced chlorhexidine skin penetration with 1,8-cineole
    A. L. Casey
    T. J. Karpanen
    B. R. Conway
    T. Worthington
    P. Nightingale
    R. Waters
    T. S. J. Elliott
    BMC Infectious Diseases, 17