Degeneracy and Its Impact on the Decoding of Sparse Quantum Codes

被引:13
|
作者
Fuentes, Patricio [1 ]
Martinez, Josu Etxezarreta [1 ]
Crespo, Pedro M. [1 ]
Garcia-Frias, Javier [2 ]
机构
[1] Univ Navarra, Dept Biomed Engn & Sci, Tecnun, San Sebastian 20018, Spain
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
关键词
Parity check codes; Quantum mechanics; Qubit; Maximum likelihood decoding; Encoding; Symmetric matrices; Phase change materials; Decoherence; degeneracy; sparse quantum codes; quantum low-density-parity-check codes; sum product algorithm; ERROR-CORRECTION CODES; LDPC CODES; DECOHERENCE; ALGORITHMS; DESIGN; CONSTRUCTION; COMPUTATION; MODELS;
D O I
10.1109/ACCESS.2021.3089829
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The well-documented capacity-approaching performance of sparse codes in the realm of classical communications has inspired the search for their quantum counterparts. Sparse quantum codes are generally built as the amalgamation of two robust classical codes and are decoded via classical decoding algorithms. However, the quantum paradigm presents phenomena that act in a deleterious manner on sparse quantum codes when they are decoded based on classical methodologies. One such phenomenon is known as degeneracy, and it is a major contributor to why sparse quantum codes do not entirely evoke the stupendous error correcting abilities of their classical counterparts. In this paper, we adopt a group theoretical approach to discuss the issue of degeneracy as it relates to sparse quantum codes. Furthermore, we compare the decoding process of sparse quantum codes with that of sparse classical codes, illustrating the challenges that appear in the quantum domain. Finally, we provide a detailed example to illustrate the effects of degeneracy on sparse quantum codes and the challenges of designing an optimum decoder for these schemes.
引用
收藏
页码:89093 / 89119
页数:27
相关论文
共 50 条
  • [21] Decoding quantum color codes with MaxSAT
    Berent, Lucas
    Burgholzer, Lukas
    Derks, Peter-Jan H. S.
    Eisert, Jens
    Wille, Robert
    QUANTUM, 2024, 8
  • [22] Sparse Quantum Codes from Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 327 - 334
  • [23] Sparse Graphs for Belief Propagation Decoding of Polar Codes
    Cammerer, Sebastian
    Ebada, Moustafa
    Elkelesh, Ahmed
    ten Brink, Stephan
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1465 - 1469
  • [24] The Error Exponent of Sparse Regression Codes with AMP Decoding
    Rush, Cynthia
    Venkataramanan, Ramji
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2478 - 2482
  • [25] Sparse Quantum Codes From Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2464 - 2479
  • [26] Quantum sparse coding and decoding based on quantum network
    Ji, Xun
    Liu, Qin
    Huang, Shan
    Chen, Andi
    Wu, Shengjun
    APPLIED PHYSICS LETTERS, 2024, 125 (10)
  • [27] Feedback sum-product decoding of sparse quantum codes for X-Z Pauli channels
    Wang Yun-Jiang
    Bai Bao-Ming
    Peng Jin-Ye
    Wang Xin-Mei
    ACTA PHYSICA SINICA, 2011, 60 (03)
  • [28] Universal Sparse Superposition Codes With Spatial Coupling and GAMP Decoding
    Barbier, Jean
    Dia, Mohamad
    Macris, Nicolas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5618 - 5642
  • [29] On Design and Efficient Decoding of Sparse Random Linear Network Codes
    Li, Ye
    Chan, Wai-Yip
    Blostein, Steven D.
    IEEE ACCESS, 2017, 5 : 17031 - 17044
  • [30] Error correction and decoding for quantum stabilizer codes
    Xiao Fang-Ying
    Chen Han-Wu
    ACTA PHYSICA SINICA, 2011, 60 (08)