The survival probability of a branching random walk in presence of an absorbing wall

被引:36
|
作者
Derrida, B. [1 ]
Simon, D. [1 ]
机构
[1] Ecole Normale Super, Lab Phys Stat, F-75231 Paris 05, France
关键词
D O I
10.1209/0295-5075/78/60006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A branching random walk in presence of an absorbing wall moving at a constant velocity upsilon undergoes a phase transition as upsilon varies. The problem can be analyzed using the properties of the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation. We find that the survival probability of the branching random walk vanishes at a critical velocity upsilon(c) of the wall with an essential singularity and we characterize the divergences of the relaxation times for upsilon < upsilon(c) and upsilon > upsilon(c). At upsilon = upsilon(c) the survival probability decays like a stretched exponential. Using the F-KPP equation: one can also calculate the distribution of the population size at time t conditioned by the survival of one individual at a later time T > t. Our numerical results indicate that the size of the population diverges like the exponential of (upsilon(c) - upsilon)(-1/2) in the quasi-stationary regime below upsilon(c). Moreover for upsilon > upsilon(c), our data indicate that there is no quasi-stationary regime. Copyright (C) EPLA, 2007
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Survival Probability in a Quantum Walk on a One-Dimensional Lattice with Partially Absorbing Traps
    Gonulol, Meltem
    Aydiner, Ekrem
    Shikano, Yutaka
    Mustecaplioglu, Ozgur E.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (07) : 1596 - 1600
  • [42] EMISSION PROBABILITY IN A RANDOM WALK
    LEVINSON, N
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03): : 442 - 447
  • [43] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [44] A NOTE ON THE BRANCHING RANDOM-WALK
    KAPLAN, N
    JOURNAL OF APPLIED PROBABILITY, 1982, 19 (02) : 421 - 424
  • [45] On convergent probability of a random walk
    Lee, Y. -F.
    Ching, W. -K.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (07) : 833 - 838
  • [46] BRANCHING CAPACITY OF A RANDOM WALK RANGE
    Schapira, Bruno
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (03):
  • [47] Branching random walk with trapping zones
    Biard, Romain
    Mallein, Bastien
    Rabehasaina, Landy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) : 2341 - 2366
  • [48] A branching random walk among disasters
    Gantert, Nina
    Junk, Stefan
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [49] The range of asymmetric branching random walk
    Chi, Jui-Lin
    Hong, Jyy-, I
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [50] Maximum of a catalytic branching random walk
    Bulinskaya, E. Vl.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (03) : 546 - 548