Realtime Global Attention Network for Semantic Segmentation

被引:3
|
作者
Mo, Xi [1 ]
Chen, Xiangyu [1 ]
机构
[1] Univ Kansas, Sch Engn, Lawrence, KS 66049 USA
关键词
Object detection; segmentation and categorization; deep learning for visual perception; perception for grasping and manipulation;
D O I
10.1109/LRA.2022.3140443
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we proposed an end-to-end realtime global attention neural network (RGANet) for the challenging task of semantic segmentation. Different from the encoding strategy deployed by self-attention paradigms,the proposed global attention module encodes global attention via depthwise convolution and affine transformations. The integration of these global attention modules into a hierarchical architecture maintains high inferential performance. In addition, an improved evaluation metric, namely MGRID, is proposed to alleviate the negative effect of non-convex. widely scattered ground-truth areas. Results from extensive experiments on state-of-the-art architectures for suction region segmentation manifest the leading performance of proposed approaches for robotic monocular visual perception.
引用
收藏
页码:1574 / 1580
页数:7
相关论文
共 50 条
  • [21] An Attention Enhanced Graph Convolutional Network for Semantic Segmentation
    Chen, Ao
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 734 - 745
  • [22] Multiple-Attention Mechanism Network for Semantic Segmentation
    Wang, Dongli
    Xiang, Shengliang
    Zhou, Yan
    Mu, Jinzhen
    Zhou, Haibin
    Irampaye, Richard
    SENSORS, 2022, 22 (12)
  • [23] TCNet: tensor and covariance attention network for semantic segmentation
    Xu, Haixia
    Liu, Yanbang
    Wang, Wei
    Zhou, Wei
    Ding, Fanxun
    Han, Feng
    Peng, Wei
    SOFT COMPUTING, 2024, 28 (11-12) : 7575 - 7585
  • [24] Polarized Attention Weak Supervised Semantic Segmentation Network
    Dai, Min
    Wu, Donghang
    Dawei, Yang
    IEEE ACCESS, 2024, 12 : 53965 - 53973
  • [25] Lightweight Self-Attention Network for Semantic Segmentation
    Zhou, Yan
    Zhou, Haibin
    Li, Nanjun
    Li, Jianxun
    Wang, Dongli
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [26] HANA: Hierarchical Attention Network Assembling for Semantic Segmentation
    Wei Liu
    Ding Li
    Hongqi Su
    Cognitive Computation, 2021, 13 : 1128 - 1135
  • [27] PPNet : pooling position attention network for semantic segmentation
    Xu, Haixia
    Wang, Wei
    Wang, Shuailong
    Zhou, Wei
    Chen, Qi
    Peng, Wei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 37007 - 37023
  • [28] Point attention network for point cloud semantic segmentation
    Dayong REN
    Zhengyi WU
    Jiawei LI
    Piaopiao YU
    Jie GUO
    Mingqiang WEI
    Yanwen GUO
    Science China(Information Sciences), 2022, 65 (09) : 99 - 112
  • [29] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [30] Attention-Guided Network for Semantic Video Segmentation
    Li, Jiangyun
    Zhao, Yikai
    Fu, Jun
    Wu, Jiajia
    Liu, Jing
    IEEE ACCESS, 2019, 7 : 140680 - 140689