Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

被引:1
|
作者
Ye, Yu [1 ]
Xiao, Jun [1 ]
Wang, Hailong [2 ]
Ye, Ziliang [1 ]
Zhu, Hanyu [1 ]
Zhao, Mervin [1 ]
Wang, Yuan [1 ]
Zhao, Jianhua [2 ]
Yin, Xiaobo [3 ,4 ]
Zhang, Xiang [1 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 10083, Peoples R China
[3] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[4] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[5] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[6] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia
基金
美国国家科学基金会;
关键词
EXCITON BINDING-ENERGY; POLARIZATION; SPIN; DIODES; MOS2;
D O I
10.1038/NNANO.2016.49
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory(1). Recently, atomic membranes of transitionmetal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing(2-4). A variety of valleytronic devices such as valley filters and valves have been proposed(5), and optical valley excitation has been observed(2-4). However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin-valley locking in TMDC monolayers(6). We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.
引用
收藏
页码:597 / +
页数:6
相关论文
共 50 条
  • [41] Tailoring optoelectronic properties of monolayer transition metal dichalcogenide through alloying
    Kanoun, Mohammed Benali
    Goumri-Said, Souraya
    MATERIALIA, 2020, 12
  • [42] Asymmetric MXene/monolayer transition metal dichalcogenide heterostructures for functional applications
    Baihai Li
    Haoran Guo
    Yunrui Wang
    Wenxu Zhang
    Qiuju Zhang
    Liang Chen
    Xiaoli Fan
    Wanli Zhang
    Yanrong Li
    Woon-Ming Lau
    npj Computational Materials, 5
  • [43] New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide
    Carlos Trallero-Giner
    Darío G. Santiago-Pérez
    Vladimir M. Fomin
    Scientific Reports, 13
  • [44] Electron-Hole Liquid in Monolayer Transition Metal Dichalcogenide Heterostructures
    Pekh, P. L.
    Ratnikov, P., V
    Silin, A. P.
    JETP LETTERS, 2020, 111 (02) : 90 - 95
  • [45] Electron-Hole Liquid in Monolayer Transition Metal Dichalcogenide Heterostructures
    P. L. Pekh
    P. V. Ratnikov
    A. P. Silin
    JETP Letters, 2020, 111 : 90 - 95
  • [46] Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing
    Kang, Jun
    Tongay, Sefaattin
    Li, Jingbo
    Wu, Junqiao
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [47] Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor
    Ghosh, Ram Krishna
    Mahapatra, Santanu
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2013, 1 (10): : 175 - 180
  • [48] New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide
    Trallero-Giner, Carlos
    Santiago-Perez, Dario G.
    Fomin, Vladimir M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [49] Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors
    Wu, Si-Si
    Huang, Teng-Xiang
    Lin, Kai-Qiang
    Yao, Xu
    Hu, Jing-Ting
    Tang, Ding-Liang
    Bao, Yi-Fan
    Ren, Bin
    2D MATERIALS, 2019, 6 (04):
  • [50] Compact Model of Carrier Transport in Monolayer Transition Metal Dichalcogenide Transistors
    Wu, Tong
    Cao, Xi
    Guo, Jing
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (01) : 177 - 183