Two-dimensional Bloch oscillations: a Lie-algebraic approach

被引:10
|
作者
Mossmann, S [1 ]
Schulze, A [1 ]
Witthaut, D [1 ]
Korsch, HJ [1 ]
机构
[1] Univ Kaiserslautern, D-67653 Kaiserslautern, Germany
来源
关键词
D O I
10.1088/0305-4470/38/15/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Lie-algebraic approach successfully used to describe one-dimensional Bloch oscillations in a tight-binding approximation is extended to two dimensions. This extension has the same algebraic structure as the one-dimensional case while the dynamics shows a much richer behaviour. The Bloch oscillations are discussed using analytical expressions for expectation values and widths of the operators of the algebra. It is shown under which conditions the oscillations survive in two dimensions and the centre of mass of a wavepacket shows a Lissajous-like motion. In contrast to the one-dimensional case, a wavepacket shows systematic dispersion that depends on the direction of the field and the dispersion relation of the field-free system.
引用
收藏
页码:3381 / 3395
页数:15
相关论文
共 50 条
  • [31] Uncovering band topology via quantized drift in two-dimensional Bloch oscillations
    Zhu, Bo
    Hu, Shi
    Zhong, Honghua
    Ke, Yongguan
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [32] Lie-algebraic discrete approximation for nonlinear evolution equations
    Lustyk M.
    Journal of Mathematical Sciences, 2002, 109 (1) : 1169 - 1172
  • [33] Algebraic approach to molecular spectra: Two-dimensional problems
    Iachello, F
    Oss, S
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (18): : 6956 - 6963
  • [34] LIE-ALGEBRAS OF DIFFERENTIAL-OPERATORS AND LIE-ALGEBRAIC POTENTIALS
    KAMRAN, N
    OLVER, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) : 342 - 356
  • [35] Lie-Algebraic Conditions for Stability of Linear Impulsive Systems
    Lawrence, Douglas A.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3248 - 3253
  • [36] GLOBAL INVARIANCE AND LIE-ALGEBRAIC DESCRIPTION IN THE THEORY OF DISLOCATIONS
    TRZESOWSKI, A
    SLAWIANOWSKI, JJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (11) : 1239 - 1249
  • [37] Imprimitively generated Lie-algebraic Hamiltonians and separation of variables
    Milson, R
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (06): : 1298 - 1322
  • [38] A Lie-algebraic condition for stability of switched nonlinear systems
    Margaliot, M
    Liberzon, D
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4619 - 4624
  • [39] Classical mechanics on noncommutative space With Lie-algebraic structure
    Miao, Yan-Gang
    Wang, Xu-Dong
    Yu, Shao-Jie
    ANNALS OF PHYSICS, 2011, 326 (08) : 2091 - 2107
  • [40] On the Lie-Algebraic Origin of Metric 3-Algebras
    Paul de Medeiros
    José Figueroa-O’Farrill
    Elena Méndez-Escobar
    Patricia Ritter
    Communications in Mathematical Physics, 2009, 290