Hybrid Whale Optimization Algorithm with simulated annealing for feature selection

被引:849
|
作者
Mafarja, Majdi M. [1 ]
Mirjalili, Seyedali [2 ]
机构
[1] Birzeit Univ, Dept Comp Sci, Birzeit, Palestine
[2] Grifith Univ, Sch Informat & Commun Technol, Brisbane, Qld 4111, Australia
关键词
Feature selection; Hybrid optimization; Whale Optimization Algorithm; Simulated annealing; Classification; WOA; Optimization; FEATURE SUBSET-SELECTION; GENETIC ALGORITHM; COLONY; SOLVE; ROUGH;
D O I
10.1016/j.neucom.2017.04.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hybrid metaheuristics are of the most interesting recent trends in optimization and memetic algorithms. In this paper, two hybridization models are used to design different feature selection techniques based on Whale Optimization Algorithm (WOA). In the first model, Simulated Annealing (SA) algorithm is embedded in WOA algorithm, while it is used to improve the best solution found after each iteration of WOA algorithm in the second model. The goal of using SA here is to enhance the exploitation by searching the most promising regions located by WOA algorithm. The performance of the proposed approaches is evaluated on 18 standard benchmark datasets from UCI repository and compared with three well-known wrapper feature selection methods in the literature. The experimental results confirm the efficiency of the proposed approaches in improving the classification accuracy compared to other wrapper-based algorithms, which insures the ability of WOA algorithm in searching the feature space and selecting the most informative attributes for classification tasks. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:302 / 312
页数:11
相关论文
共 50 条
  • [31] A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection
    Mohammadzadeh, Hekmat
    Gharehchopogh, Farhad Soleimanian
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 176 - 209
  • [32] A Spark-based Distributed Whale Optimization Algorithm for Feature Selection
    Chen, Hongwei
    Hu, Zhou
    Han, Lin
    Hou, Qiao
    Ye, Zhiwei
    Yuan, Jiansen
    Zeng, Jun
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 1, 2019, : 70 - 74
  • [33] A comprehensive survey of feature selection techniques based on whale optimization algorithm
    Mohammad Amiriebrahimabadi
    Najme Mansouri
    Multimedia Tools and Applications, 2024, 83 : 47775 - 47846
  • [34] SVM parameters and feature selection optimization based on improved whale algorithm
    Guo H.
    Fu J.-D.
    Li Z.-D.
    Yan Y.
    Li X.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2952 - 2963
  • [35] A feature selection method based on adaptive simulated annealing genetic algorithm
    School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    Binggong Xuebao, 2009, 1 (81-85):
  • [36] Feature Subset Selection within a Simulated Annealing Data Mining Algorithm
    Debuse J.C.W.
    Rayward-Smith V.J.
    Journal of Intelligent Information Systems, 1997, 9 (1) : 57 - 81
  • [37] Feature Selection with Test Cost Constraint through a Simulated Annealing Algorithm
    Niu, Junxia
    Zhao, Hong
    Zhu, William
    JOURNAL OF INTERNET TECHNOLOGY, 2016, 17 (06): : 1133 - 1140
  • [38] Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
    Mohammad Tubishat
    Mohammad A. M. Abushariah
    Norisma Idris
    Ibrahim Aljarah
    Applied Intelligence, 2019, 49 : 1688 - 1707
  • [39] Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
    Tubishat, Mohammad
    Abushariah, Mohammad A. M.
    Idris, Norisma
    Aljarah, Ibrahim
    APPLIED INTELLIGENCE, 2019, 49 (05) : 1688 - 1707
  • [40] Stability Investigation of Improved Whale Optimization Algorithm in the Process of Feature Selection
    Khaire, Utkarsh Mahadeo
    Dhanalakshmi, R.
    IETE TECHNICAL REVIEW, 2022, 39 (02) : 286 - 300