INVESTIGATING WATERFOWL HABITAT-USE PATTERNS WITH MULTI-SOURCE REMOTE SENSING DATA

被引:0
|
作者
Zheng, Ruobing [1 ,2 ]
Luo, Ze [2 ]
Yan, Baoping [2 ]
机构
[1] Univ Chinese Acad Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
关键词
remote sensing; habitat use; Bar-headed Geese; H5N1;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Waterfowl habitat analysis is significant to understand species behavior and make conservation plans, especially for Bar headed Geese, which was involved in the large-scale outbreak of highly pathogenic avian influenza H5N1 in the year 2005 in China. Many studies have demonstrated there is a significant correlation between wildlife habitat and remote sensing data. The various reflectance data contain substantial ecological information that is valuable to model the habitat selection of wildlife. In this paper, we investigate the habitat use patterns of Bar-headed Geese by combining multi-source satellite images with bird GPS records, using Log-likelihood chi-square test to explore the waterfowl habitat preferences. The results show the bird's favorites are significant in various habitatcategories, which confirm previous surveys. This work helps to manage species and make disease control strategies for this sensitive waterfowl.
引用
收藏
页码:9264 / 9267
页数:4
相关论文
共 50 条
  • [21] One-stop Service for Multi-Source Heterogeneous Remote Sensing Data
    Huang, ZhenChun
    Zhong, AnRun
    Li, GuoQing
    PROCEEDINGS OF THE 2016 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND MATERIALS (ICMCM 2016), 2016, 104 : 417 - 423
  • [22] Large discrepancies of global greening: Indication of multi-source remote sensing data
    Wang, Zhaoqi
    Wang, Hong
    Wang, Tongfang
    Wang, Lina
    Liu, Xiang
    Zheng, Kai
    Huang, Xiaotao
    GLOBAL ECOLOGY AND CONSERVATION, 2022, 34
  • [23] Application of Multi-source Remote Sensing Data in Geological Disaster Risk Assessment
    Xue, Dongjian
    He, Zhengwei
    Tao, Shu
    Zhang, Donghui
    Zhang, Xuefeng
    CHINESE PERSPECTIVE ON RISK ANALYSIS AND CRISIS RESPONSE, 2010, 13 : 109 - +
  • [24] Green Tide Information Extraction Based on Multi-source Remote Sensing Data
    Liang, Tingting
    Ke, Lina
    Fan, Jianchao
    Zhao, Jianhua
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 460 - 465
  • [25] Integration of multi-source remote sensing data for land cover change detection
    Petit, CC
    Lambin, EF
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2001, 15 (08) : 785 - 803
  • [26] River Ecological Protection and Restoration Using Multi-source Remote Sensing Data
    Zhang, Xiangyong
    MOBILE NETWORKS & APPLICATIONS, 2023, 28 (06): : 2118 - 2129
  • [27] Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data
    Zhu, Wenbin
    Jia, Shaofeng
    Lv, Aifeng
    REMOTE SENSING, 2014, 6 (11): : 10457 - 10482
  • [28] Mallat fusion for multi-source remote sensing classification
    Cao, Dongdong
    Yin, Qian
    Guo, Ping
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 588 - 593
  • [29] Soil moisture content inversion research using multi-source remote sensing data
    Zhang Chengcai
    Zhu Zule
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [30] Yield estimation of summer maize based on multi-source remote-sensing data
    Wang, Jingshu
    He, Peng
    Liu, Zhengchu
    Jing, Yaodong
    Bi, Rutian
    AGRONOMY JOURNAL, 2022, 114 (06) : 3389 - 3406