A novel ensemble deep learning model for stock prediction based on stock prices and news

被引:77
|
作者
Li, Yang [1 ]
Pan, Yi [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
关键词
Stock prediction; Deep learning; Machine learning; Ensemble learning; Statistical finance; SUPPORT VECTOR MACHINES;
D O I
10.1007/s41060-021-00279-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. One of the most popular and complex deep learning in finance topics is future stock prediction. The difficulty that causes the future stock forecast is that there are too many different factors that affect the amplitude and frequency of the rise and fall of stocks at the same time. Some of the company-specific factors that can affect the share price like news releases on earnings and profits, future estimated earnings, the announcement of dividends, introduction of a new product or a product recall, secure a new large contract, employee layoffs, a major change of management, anticipated takeover or merger, and accounting errors or scandals. Furthermore, these factors are only company factors, and other factors affect the future trend of stocks, such as industry performance, investor sentiment, and economic factors. This paper proposes a novel deep learning approach to predict future stock movement. The model employs a blending ensemble learning method to combine two recurrent neural networks, followed by a fully connected neural network. In our research, we use the S&P 500 Index as our test case. Our experiments show that our blending ensemble deep learning model outperforms the best existing prediction model substantially using the same dataset, reducing the mean-squared error from 438.94 to 186.32, a 57.55% reduction, increasing precision rate by 40%, recall by 50%, F1-score by 44.78%, and movement direction accuracy by 33.34%, respectively. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [31] A Stock Price Prediction Model Based on Investor Sentiment and Optimized Deep Learning
    Mu, Guangyu
    Gao, Nan
    Wang, Yuhan
    Dai, Li
    IEEE ACCESS, 2023, 11 : 51353 - 51367
  • [32] Stock prediction using deep learning
    Ritika Singh
    Shashi Srivastava
    Multimedia Tools and Applications, 2017, 76 : 18569 - 18584
  • [33] Deep Learning for Stock Market Prediction
    Nabipour, M.
    Nayyeri, P.
    Jabani, H.
    Mosavi, A.
    Salwana, E.
    Shahab, S.
    ENTROPY, 2020, 22 (08)
  • [34] Stock prediction using deep learning
    Singh, Ritika
    Srivastava, Shashi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) : 18569 - 18584
  • [35] Deep Reinforcement Learning for Stock Prediction
    Zhang, Junhao
    Lei, Yifei
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [36] MMDL: A Novel Multi-modal Deep Learning Model for Stock Market Prediction
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 1070 - 1071
  • [37] Predicting Stock prices using Ensemble Learning and Sentiment Analysis
    Pasupulety, Ujjwal
    Anees, Aiman Abdullah
    Anmol, Subham
    Mohan, Biju R.
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 215 - 222
  • [38] Graphical Deep Learning Prediction Model for Stock Risk Management
    Byeon, Haewon
    Chitta, Shyamsunder
    Shavkatovich, Shavkatov Navruzbek
    Ansari, Ghulam Jillani
    Alhaisoni, Majed
    Zhang, Yu-Dong
    FLUCTUATION AND NOISE LETTERS, 2024, 23 (02):
  • [39] TLACP: A Hybrid Deep Learning Model for Stock Market Prediction
    Li, Zechen
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 469 - 479
  • [40] Stock Price Prediction using Deep-Learning Model
    Pralcash, Tamil A.
    Sudha
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 533 - 538