Deep Learning Ensemble Based Model for Time Series Forecasting Across Multiple Applications

被引:0
|
作者
Okwuchi, Ifeanyi [1 ]
Nassar, Lobna [2 ]
Karray, Fakhri [2 ]
Ponnambalam, Kumaraswamy [1 ]
机构
[1] Univ Waterloo, Syst Design Engn Dept, Waterloo, ON, Canada
[2] Univ Waterloo, Elect & Comp Engn Dept, Waterloo, ON, Canada
关键词
Deep Learning; Ensemble Learning; attention; fresh produce; time series; yield prediction; price prediction;
D O I
10.1109/smc42975.2020.9282948
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Time series prediction has been challenging topic in several application domains. In this paper, an ensemble of two top performing deep learning architectures across different applications such as fresh produce (FP) yield prediction, FP price prediction and crude oil price prediction is proposed. First, the input data is trained on an array of different machine learning architectures, the top two performers are then combined using a stacking ensemble. The top two performers across the three tested applications are found to be Attention CNN-LSTM (AC-LSTM) and Attention ConvLSTM (ACV-LSTM). Different ensemble techniques, mean prediction, Linear Regression (LR) and Support vector Regression (SVR), are then utilized to come up with the best prediction. An aggregated measure that combines the results of mean absolute error (MAE), mean squared error (MSE) and R-2 coefficient of determination (R-2) is used to evaluate model performance. The experiment results show that across the various examined applications, the proposed model which is a stacking ensemble of the AC-LSTM and ACV-LSTM using a linear SVR is the best performing based on the aggregated measure.
引用
收藏
页码:3077 / 3083
页数:7
相关论文
共 50 条
  • [21] CoBiD-net: a tailored deep learning ensemble model for time series forecasting of covid-19
    Sourabh Shastri
    Kuljeet Singh
    Monu Deswal
    Sachin Kumar
    Vibhakar Mansotra
    Spatial Information Research, 2022, 30 : 9 - 22
  • [22] CoBiD-net: a tailored deep learning ensemble model for time series forecasting of covid-19
    Shastri, Sourabh
    Singh, Kuljeet
    Deswal, Monu
    Kumar, Sachin
    Mansotra, Vibhakar
    SPATIAL INFORMATION RESEARCH, 2022, 30 (01) : 9 - 22
  • [23] Time Series Forecasting Based on Deep Extreme Learning Machine
    Guo, Xuqi
    Pang, Yusong
    Yan, Gaowei
    Qiao, Tiezhu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6151 - 6156
  • [24] Forecasting of Forex Time Series Data Based on Deep Learning
    Ni, Lina
    Li, Yujie
    Wang, Xiao
    Zhang, Jinquan
    Yu, Jiguo
    Qi, Chengming
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 647 - 652
  • [25] Ensemble of Time Series and Machine Learning Model for Forecasting Volatility in Agricultural Prices
    Ranjit Kumar Paul
    Tanima Das
    Md Yeasin
    National Academy Science Letters, 2023, 46 : 185 - 188
  • [26] Ensemble of Time Series and Machine Learning Model for Forecasting Volatility in Agricultural Prices
    Paul, Ranjit Kumar
    Das, Tanima
    Yeasin, Md
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2023, 46 (03): : 185 - 188
  • [27] A Model Ranking Based Selective Ensemble Approach for Time Series Forecasting
    Adhikari, Ratnadip
    Verma, Ghanshyam
    Khandelwal, Ina
    INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015), 2015, 48 : 14 - 21
  • [28] Ensemble Approach for Time Series Analysis in Demand Forecasting Ensemble Learning
    Akyuz, A. Okay
    Bulbul, Berna Atak
    Uysal, Mitat
    Uysal, M. Ozan
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 7 - 12
  • [29] Analysis of Financial Time Series Forecasting using Deep Learning Model
    Kumar, Raghavendra
    Kumar, Pardeep
    Kumar, Yugal
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 877 - 881
  • [30] A hybrid deep learning model for accurate time series forecasting of cryptocurrencies
    Nagdiya, Aditya
    Kapoor, Vivek
    Tokekar, Vrinda
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04): : 1061 - 1072