Recovering parameters of the Ikeda equation from noisy time series

被引:8
|
作者
Ponomarenko, VI [1 ]
Prokhorov, MD [1 ]
机构
[1] Russian Acad Sci, Saratov Branch, Inst Radio Engn & Elect, Saratov, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.1894449
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe a procedure for determining all parameters of the Ikeda delay-differential equation, modeling the dynamics of a passive optical resonator, from time series of the dynamical variable. It is demonstrated that the proposed procedure can be used for recovery of the nonlinear function and parameters of the Ikeda equation even in the presence of a high noise level. (C) 2005 Pleiades Publishing, Inc.
引用
收藏
页码:252 / 254
页数:3
相关论文
共 50 条
  • [21] Detection of dynamical systems from noisy multivariate time series
    Asai, Yoshiyuki
    Villa, Alessandro E. P.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 3 - +
  • [22] LYAPUNOV-EXPONENT SPECTRUM FROM NOISY TIME SERIES
    Yao, Tian-Liang
    Liu, Hai-Feng
    Xu, Jian-Liang
    Li, Wei-Feng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (06):
  • [23] Recovering the viewing parameters of random, translated and noisy projections of asymmetric objects
    Lauren, PD
    Nandhakumar, N
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 885 - 890
  • [24] Detection of "noisy" chaos in a time series
    Chon, KH
    Kanters, JK
    Cohen, RJ
    Holstein-Rathlou, NH
    METHODS OF INFORMATION IN MEDICINE, 1997, 36 (4-5) : 294 - 297
  • [25] Detection of patterns in noisy time series
    Tingley, MA
    McLean, L
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (02): : 217 - 237
  • [26] Analysis of the Recurrence of Noisy Time Series
    Rusakov A.V.
    Medvinsky A.V.
    Nurieva N.I.
    Biophysics, 2018, 63 (4) : 590 - 595
  • [27] Detecting smoothness in noisy time series
    Cawley, R
    Hsu, GH
    Salvino, LW
    CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 55 - 67
  • [28] Characterization of noisy symbolic time series
    Kulp, Christopher W.
    Smith, Suzanne
    PHYSICAL REVIEW E, 2011, 83 (02):
  • [29] Recovering smooth dynamics from time series with the aid of recurrence plots
    Atay, FM
    Altintas, Y
    PHYSICAL REVIEW E, 1999, 59 (06): : 6593 - 6598
  • [30] Reconstructing differential equation from a time series
    Petrov, V
    Kurths, J
    Georgiev, N
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (11): : 3307 - 3323