Recovering parameters of the Ikeda equation from noisy time series

被引:8
|
作者
Ponomarenko, VI [1 ]
Prokhorov, MD [1 ]
机构
[1] Russian Acad Sci, Saratov Branch, Inst Radio Engn & Elect, Saratov, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.1894449
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe a procedure for determining all parameters of the Ikeda delay-differential equation, modeling the dynamics of a passive optical resonator, from time series of the dynamical variable. It is demonstrated that the proposed procedure can be used for recovery of the nonlinear function and parameters of the Ikeda equation even in the presence of a high noise level. (C) 2005 Pleiades Publishing, Inc.
引用
收藏
页码:252 / 254
页数:3
相关论文
共 50 条
  • [1] Recovering parameters of the Ikeda equation from noisy time series
    V. I. Ponomarenko
    M. D. Prokhorov
    Technical Physics Letters, 2005, 31 : 252 - 254
  • [2] Recovering parameters of time-delay systems from transient time series
    V. I. Ponomarenko
    M. D. Prokhorov
    Technical Physics Letters, 2008, 34 : 483 - 485
  • [3] Recovering parameters of time-delay systems from transient time series
    Ponomarenko, V. I.
    Prokhorov, M. D.
    TECHNICAL PHYSICS LETTERS, 2008, 34 (06) : 483 - 485
  • [4] Recovering the Parameters of an LDPC Code from Noisy Intercepted Sequences
    Longqing L.
    Fangqi S.
    Jing Z.
    IEEE Transactions on Applied Superconductivity, 2022, 32 (06)
  • [5] Recovering the Parameters of an LDPC Code From Noisy Intercepted Sequences
    Li Longqing
    Shen Fangqi
    Zhou Jing
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 617 - 621
  • [6] Estimation of parameters and unobserved components for nonlinear systems from noisy time series
    Sitz, A
    Schwarz, U
    Kurths, J
    Voss, HU
    PHYSICAL REVIEW E, 2002, 66 (01):
  • [7] Estimation of parameters in one-dimensional maps from noisy chaotic time series
    Smirnov, DA
    Vlaskin, VS
    Ponomarenko, VI
    PHYSICS LETTERS A, 2005, 336 (06) : 448 - 458
  • [8] Error estimate for retrieving parameters of a nonlinear map from noisy chaotic time series
    Butkovsky O.Y.
    Kravtsov Y.A.
    Logunov M.Y.
    Radiophysics and Quantum Electronics, 2002, 45 (1) : 48 - 58
  • [9] Delay estimation from noisy time series
    Ohira, T
    Sawatari, R
    PHYSICAL REVIEW E, 1997, 55 (03) : R2077 - R2080
  • [10] Recovering a polygon from noisy data
    Latecki, LJ
    Rosenfeld, A
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2002, 86 (01) : 32 - 51