Torsion theories for finite von Neumann algebras

被引:5
|
作者
Vas, L [1 ]
机构
[1] Univ Sci Philadelphia, Dept Math Phys & Comp Sci, Philadelphia, PA 19104 USA
关键词
algebra of affiliated operators; finite von Neumann algebra; torsion theories;
D O I
10.1081/AGB-200049871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study of modules over a finite von Neumann algebra A can be advanced by the use of torsion theories. In this work, some torsion theories for A are presented, compared, and studied. In particular, we prove that the torsion theory (T, P) (in which a module is torsion if it is zero-dimensional) is equal to both Lambek and Goldie torsion theories for A. Using torsion theories, we describe the injective envelope of a finitely generated projective si-module and the inverse of the isomorphism K-0(A) -> K-0(U), where U is the algebra of affiliated operators of A. Then the formula for computing the capacity of a finitely generated module is obtained. Lastly, we study the behavior of the torsion and torsion-free classes when passing from a subalgebra B of a finite von Neumann algebra A to A. With these results, we prove that the capacity is invariant under the induction of a B-module.
引用
收藏
页码:663 / 688
页数:26
相关论文
共 50 条
  • [31] A NOTE ON RELATIVE AMENABILITY OF FINITE VON NEUMANN ALGEBRAS
    Zhou, Xiaoyan
    Fang, Junsheng
    JOURNAL OF OPERATOR THEORY, 2019, 81 (01) : 107 - 132
  • [32] Free orbit dimension of finite von Neumann algebras
    Hadwin, Don
    Shen, Junhao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 249 (01) : 75 - 91
  • [33] APPROXIMATELY FINITE-DIMENSIONAL VON NEUMANN ALGEBRAS
    ELLIOTT, GA
    MATHEMATICA SCANDINAVICA, 1976, 39 (01) : 91 - 101
  • [34] Unitarily invariant norms on finite von Neumann algebras
    Haihui Fan
    Don Hadwin
    Acta Scientiarum Mathematicarum, 2023, 89 : 449 - 499
  • [35] Haagerup approximation property for finite von Neumann algebras
    Jolissaint, P
    JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 549 - 571
  • [36] On free entropy dimension of finite von Neumann algebras
    Ge, LM
    Shen, JH
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 546 - 566
  • [37] Correspondences, von Neumann algebras and holomorphic L2 torsion
    Carey, A
    Farber, M
    Mathai, V
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (04): : 695 - 736
  • [38] Determinant lines, von Neumann algebras and L-2 torsion
    Carey, A
    Farber, M
    Mathai, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 484 : 153 - 181
  • [39] Minimality of convergence in measure topologies on finite von Neumann algebras
    Bikchentaev, AM
    MATHEMATICAL NOTES, 2004, 75 (3-4) : 315 - 321
  • [40] Decomposability and Norm Convergence Properties in Finite von Neumann Algebras
    Ken Dykema
    Joseph Noles
    Dmitriy Zanin
    Integral Equations and Operator Theory, 2018, 90