DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks

被引:37
|
作者
Chen, Huili [1 ]
Fu, Cheng [1 ]
Rouhani, Bita Darvish [1 ,2 ]
Zhao, Jishen [1 ]
Koushanfar, Farinaz [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
[2] Microsoft, Redmond, WA USA
关键词
IP Protection; Deep Neural Networks; Software/Hardware Co-design; Attestation;
D O I
10.1145/3307650.3322251
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging hardware architectures for Deep Neural Networks (DNNs) are being commercialized and considered as the hardware-level Intellectual Property (IP) of the device providers. However, these intelligent devices might be abused and such vulnerability has not been identified. The unregulated usage of intelligent platforms and the lack of hardware-bounded IP protection impair the commercial advantage of the device provider and prohibit reliable technology transfer. Our goal is to design a systematic methodology that provides hardware-level IP protection and usage control for DNN applications on various platforms. To address the IP concern, we present DeepAttest, the first on-device DNN attestation method that certifies the legitimacy of the DNN program mapped to the device. DeepAttest works by designing a device-specific fingerprint which is encoded in the weights of the DNN deployed on the target platform. The embedded fingerprint (FP) is later extracted with the support of the Trusted Execution Environment (TEE). The existence of the pre-defined FP is used as the attestation criterion to determine whether the queried DNN is authenticated. Our attestation framework ensures that only authorized DNN programs yield the matching FP and are allowed for inference on the target device. DeepAttest provisions the device provider with a practical solution to limit the application usage of her manufactured hardware and prevents unauthorized or tampered DNNs from execution. We take an Algorithm/Software/Hardware co-design approach to optimize DeepAttest's overhead in terms of latency and energy consumption. To facilitate the deployment, we provide a high-level API of DeepAttest that can be seamlessly integrated into existing deep learning frameworks and TEEs for hardware-level IP protection and usage control. Extensive experiments corroborate the fidelity, reliability, security, and efficiency of DeepAttest on various DNN benchmarks and TEE-supported platforms.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 50 条
  • [21] Towards a framework for end-to-end control of a simulated vehicle with spiking neural networks
    Kaiser, Jacques
    Tieck, J. Camilo Vasquez
    Hubschneider, Christian
    Wolf, Peter
    Weber, Michael
    Hoff, Michael
    Friedrich, Alexander
    Wojtasik, Konrad
    Roennau, Arne
    Kohlhaas, Ralf
    Dillmann, Rudiger
    Zollner, J. Marius
    2016 IEEE INTERNATIONAL CONFERENCE ON SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR), 2016, : 127 - 134
  • [22] Image Shadow Removal Using End-To-End Deep Convolutional Neural Networks
    Fan, Hui
    Han, Meng
    Li, Jinjiang
    APPLIED SCIENCES-BASEL, 2019, 9 (05):
  • [23] A study on tooth segmentation and numbering using end-to-end deep neural networks
    Silva, Bernardo
    Pinheiro, Lais
    Oliveira, Luciano
    Pithon, Matheus
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 164 - 171
  • [24] End-to-End Premature Ventricular Contraction Detection Using Deep Neural Networks
    Kraft, Dimitri
    Bieber, Gerald
    Jokisch, Peter
    Rumm, Peter
    SENSORS, 2023, 23 (20)
  • [25] An End-To-End Flood Stage Prediction System Using Deep Neural Networks
    Windheuser, L.
    Karanjit, R.
    Pally, R.
    Samadi, S.
    Hubig, N. C.
    EARTH AND SPACE SCIENCE, 2023, 10 (01)
  • [26] Towards End-to-End Speech Recognition with Deep Multipath Convolutional Neural Networks
    Zhang, Wei
    Zhai, Minghao
    Huang, Zilong
    Liu, Chen
    Li, Wei
    Cao, Yi
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI, 2019, 11745 : 332 - 341
  • [27] An End-to-End Approach for Seam Carving Detection Using Deep Neural Networks
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Passos, Leandro A.
    Papa, Joao Paulo
    da Costa, Kelton Augusto P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 447 - 457
  • [28] Deep tracking in the wild: End-to-end tracking using recurrent neural networks
    Dequaire, Julie
    Ondruska, Peter
    Rao, Dushyant
    Wang, Dominic
    Posner, Ingmar
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (4-5): : 492 - 512
  • [29] Leukocyte Segmentation via End-to-End Learning of Deep Convolutional Neural Networks
    Lu, Yan
    Fan, Haoyi
    Li, Zuoyong
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 191 - 200
  • [30] End-to-End Blind Image Quality Assessment Using Deep Neural Networks
    Ma, Kede
    Liu, Wentao
    Zhang, Kai
    Duanmu, Zhengfang
    Wang, Zhou
    Zuo, Wangmeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1202 - 1213