Finite volume methods for degenerate chemotaxis model

被引:30
|
作者
Andreianov, Boris [2 ]
Bendahmane, Mostafa [1 ]
Saad, Mazen [3 ]
机构
[1] Univ Bordeaux 2, Inst Math Bordeaux, F-33076 Bordeaux, France
[2] Univ Franche Comte, CNRS, UMR 6623, Math Lab, F-25030 Besancon, France
[3] CNRS, UMR 6629, Lab Math Jean Leray, Ecole Cent Nantes,Dept Informat & Math, F-44321 Nantes 3, France
关键词
Degenerate; Reaction-diffusion; Chemotaxis; Finite volume scheme; KELLER-SEGEL MODEL; NONLINEAR DIFFUSION; PARABOLIC EQUATIONS; PREVENTION; SCHEME;
D O I
10.1016/j.cam.2011.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite volume method for solving the degenerate chemotaxis model is presented, along with numerical examples. This model consists of a degenerate parabolic convection-diffusion PDE for the density of the cell-population coupled to a parabolic PDE for the chemoattractant concentration. It is shown that discrete solutions exist, and the scheme converges. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4015 / 4031
页数:17
相关论文
共 50 条
  • [31] CO-VOLUME METHODS FOR DEGENERATE PARABOLIC PROBLEMS
    BAUGHMAN, LA
    WALKINGTON, NJ
    NUMERISCHE MATHEMATIK, 1993, 64 (01) : 45 - 67
  • [32] The finite difference solutions of a Chemotaxis biological model
    Wang, Xia
    Guo, Changhong
    Fang, Shaomei
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 2208 - 2212
  • [33] Finite volume element methods for a multi-dimensional fracture model
    Chen, Shuangshuang
    Li, Xiaoli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [34] Finite volume methods for pricing jump-diffusion option model
    Gan X.
    Yin J.
    Li R.
    Tongji Daxue Xuebao/Journal of Tongji University, 2016, 44 (09): : 1458 - 1465
  • [35] GLOBAL REGULARITY VERSUS INFINITE-TIME SINGULARITY FORMATION IN A CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT AND DEGENERATE DIFFUSION
    Wang, Zhi-An
    Winkler, Michael
    Wrzosek, Dariusz
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3502 - 3525
  • [36] LARGE TIME CONVERGENCE FOR A CHEMOTAXIS MODEL WITH DEGENERATE LOCAL SENSING AND CONSUMPTION
    Laurencot, Philippe
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 479 - 488
  • [37] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
    Eymard, R
    Gallouët, T
    Herbin, R
    Michel, A
    NUMERISCHE MATHEMATIK, 2002, 92 (01) : 41 - 82
  • [38] ADVECTION-DRIVEN SUPPORT SHRINKING IN A CHEMOTAXIS MODEL WITH DEGENERATE MOBILITY
    Fischer, Julian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1585 - 1615
  • [39] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
    Robert Eymard
    Thierry Gallouït
    Raphaèle Herbin
    Anthony Michel
    Numerische Mathematik, 2002, 92 : 41 - 82
  • [40] On a chemotaxis model with degenerate diffusion: Initial shrinking, eventual smoothness and expanding
    Xu, Tianyuan
    Ji, Shanming
    Mei, Ming
    Yin, Jingxue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) : 414 - 446