Early diagnosis of Parkinson's disease using machine learning algorithms

被引:127
|
作者
Senturk, Zehra Karapinar [1 ]
机构
[1] Duzce Univ, Engn Fac, Dept Comp Engn, TR-81620 Duzce, Turkey
关键词
Decision support systems; Feature selection; Machine learning; Medical diagnosis; Support Vector Machines; CLASSIFICATION; PREDICTION;
D O I
10.1016/j.mehy.2020.109603
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Parkinson's disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60-80%of these cells are lost, then enough dopamine is not produced and Parkinson's motor symptoms appear. It is thought that the disease begins many years before the motor (movement related) symptoms and therefore, researchers are looking for ways to recognize the nonmotor symptoms that appear early in the disease as early as possible, thereby halting the progression of the disease. In this paper, machine learning based diagnosis of Parkinson's disease is presented. The proposed diagnosis method consists of feature selection and classification processes. Feature Importance and Recursive Feature Elimination methods were considered for feature selection task. Classification and Regression Trees, Artificial Neural Networks, and Support Vector Machines were used for the classification of Parkinson's patients in the experiments. Support Vector Machines with Recursive Feature Elimination was shown to perform better than the other methods. 93.84% accuracy was achieved with the least number of voice features for Parkinson's diagnosis.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A review of machine learning and deep learning algorithms for Parkinson's disease detection using handwriting and voice datasets
    Islam, Md. Ariful
    Majumder, Md. Ziaul Hasan
    Hussein, Md. Alomgeer
    Hossain, Khondoker Murad
    Miah, Md. Sohel
    HELIYON, 2024, 10 (03)
  • [42] Early diagnosis of Parkinson's Disease based on Handwritten Patterns using Deep Learning
    Aghzal, Mohamed
    Mourhir, Asmaa
    2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
  • [43] Preliminary Study on Machine Learning Application for Parkinson's Disease Diagnosis
    Thias, Ahmad Habbie
    Amanda, Isca
    Jessika
    Fitri, Navila Akhsanil
    Althof, Raih Rona
    Harimurti, Suksmandhira
    Adiprawita, Widyawardana
    Anshori, Isa
    2019 ASIA PACIFIC CONFERENCE ON RESEARCH IN INDUSTRIAL AND SYSTEMS ENGINEERING (APCORISE), 2019, : 102 - 107
  • [44] Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease
    Zhang, Jing
    NPJ PARKINSONS DISEASE, 2022, 8 (01)
  • [45] Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson’s disease
    Jing Zhang
    npj Parkinson's Disease, 8
  • [46] Using Machine Learning and Accelerometry Data for Differential Diagnosis of Parkinson's Disease and Essential Tremor
    Loaiza Duque, Julian D.
    Gonzalez-Vargas, Andres M.
    Sanchez Egea, Antonio J.
    Gonzalez Rojas, Herman A.
    APPLIED COMPUTER SCIENCES IN ENGINEERING (WEA 2019), 2019, 1052 : 368 - 378
  • [47] Machine Learning Algorithms for Classification Patients with Parkinson's Disease and Hereditary Ataxias
    Escamilla-Luna, Osiris
    Wister, Miguel A.
    Hernandez-Torruco, Jose
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2023, 19 (01) : 9 - 18
  • [48] Early Diagnosis of Parkinson's Disease Based on Spiral and Wave Drawings Using Convolutional Neural Networks and Machine Learning Classifier
    Saravanan, S.
    Ramkumar, K.
    Venkatesh, S.
    Narasimhan, K.
    Adalarasu, K.
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 245 - 255
  • [49] Performance evaluation of machine learning algorithms for Parkinson's disease identification model
    Karale, Shivkumar J.
    Mangrulkar, Nikhil
    Badhiye, Sagarkumar S.
    Patil, A. R. Bhagat
    Bhoyar, Dinesh
    Khobragade, Rajesh
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (02) : 237 - 247
  • [50] Artificial Intelligence Model for Parkinson Disease Detection Using Machine Learning Algorithms
    Sunil Yadav
    Munindra Kumar Singh
    Saurabh Pal
    Biomedical Materials & Devices, 2023, 1 (2): : 899 - 911