A stochastic Jurdjevic-Quinn theorem for the stabilization of nonlinear stochastic differential systems

被引:5
|
作者
Florchinger, P
机构
[1] F 57160 Moulins les Metz
关键词
stochastic differential system; asymptotic stability in probability; Lyapunov theorem; La Salle's invariance principle;
D O I
10.1081/SAP-100002024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to state sufficient conditions for the existence of stabilizing state feedback laws for nonlinear stochastic differential systems. This result extends to the stochastic context the well-known theorem of Jurdjevic-Quinn [5] and generalizes previous results on the stabilization of stochastic differential systems.
引用
收藏
页码:473 / 480
页数:8
相关论文
共 50 条
  • [41] Stochastic suppression and stabilization of delay differential systems
    Wu, Fuke
    Hu, Shigeng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (05) : 488 - 500
  • [42] Impulsive stabilization of stochastic functional differential systems
    Yao F.-Q.
    Deng F.-Q.
    Peng Y.-J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2010, 38 (09): : 35 - 39
  • [43] STABILIZATION OF A CLASS OF NONLINEAR STOCHASTIC-SYSTEMS
    FLORCHINGER, P
    IGGIDR, A
    SALLET, G
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (02) : 235 - 243
  • [44] Stabilization of stochastic singular nonlinear hybrid systems
    Boukas, EK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (02) : 217 - 228
  • [45] State feedback stabilization of nonlinear stochastic systems
    Zhang Weihai
    Yan Zhiguo
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 784 - +
  • [46] Stabilization of a class of nonlinear composite stochastic systems
    Boulanger, C
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2000, 18 (05) : 723 - 735
  • [47] FEEDBACK STABILIZATION OF STOCHASTIC NONLINEAR COMPOSITE SYSTEMS
    FERFERA, A
    IGGIDR, A
    APPLIED MATHEMATICS LETTERS, 1994, 7 (03) : 45 - 49
  • [48] FEEDBACK STABILIZATION FOR NONLINEAR AFFINE STOCHASTIC SYSTEMS
    Zhang, Weihai
    Chen, Bor-Sen
    Yan, Zhiguo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (09): : 5363 - 5375
  • [49] A Tool for the Global Stabilization of Stochastic Nonlinear Systems
    Bian, Tao
    Jiang, Zhong-Ping
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1946 - 1951
  • [50] Stabilization and destabilization of nonlinear stochastic differential delay equations
    Zhang, Xuekang
    Yi, Haoran
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (01) : 124 - 139