On the uniformization of lattice-valued frames

被引:0
|
作者
Gutierrez Garcia, J. [1 ]
Mardones-Perez, I. [1 ]
Picado, J. [2 ]
de Prada Vicente, M. A. [1 ]
机构
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
关键词
L-valued frame; L-topological space; Uniform L-valued frame; (Lowen) iota functors; Upper/lower forgetful functors; Complete category; Cocomplete category; CATEGORY THEORETIC ASPECTS; FUZZY TOPOLOGICAL-SPACES; CHAIN;
D O I
10.1016/j.fss.2010.11.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note we discuss the appropriate way of uniformizing the notion of a lattice-valued frame introduced by Pultr and Rodabaugh in 2003. We cover the case of a completely distributive lattice (which is, in a certain sense, the most general one) and study the corresponding category of uniform lattice-valued frames. In particular, we show that this is a complete and cocomplete category that extends in a nice manner the category of uniform frames, widely studied in the literature. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [31] Lattice-valued soft algebras
    Sergey A. Solovyov
    Soft Computing, 2013, 17 : 1751 - 1766
  • [32] Lattice-valued bornological systems
    Paseka, Jan
    Solovyov, Sergey A.
    Stehlik, Milan
    FUZZY SETS AND SYSTEMS, 2015, 259 : 68 - 88
  • [33] Lattice-valued spaces: ⊤-Completions
    Reid L.
    Richardson G.
    Fuzzy Sets and Systems, 2020, 369 : 1 - 19
  • [34] Categorical study for algebras of Fitting's lattice-valued logic and lattice-valued modal logic
    Ray, Kumar Sankar
    Das, Litan Kumar
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2021, 89 (3-4) : 409 - 429
  • [35] α-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems
    Xu, Weitao
    Zhang, Wenqiang
    Zhang, Dexian
    Xu, Yang
    Pan, Xiaodong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 : 75 - 84
  • [36] α-RESOLUTION METHOD FOR LATTICE-VALUED HORN GENERALIZED CLAUSES IN LATTICE-VALUED PROPOSITIONAL LOGIC SYSTEM
    Xu, Weitao
    Zhang, Wenqiang
    Zhang, Dexian
    Xu, Yang
    Pan, Xiaodong
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 270 - 275
  • [37] α-Resolution Method for Lattice-valued Horn Generalized Clauses in Lattice-valued Propositional Logic Systems
    Weitao Xu
    Wenqiang Zhang
    Dexian Zhang
    Yang Xu
    Xiaodong Pan
    International Journal of Computational Intelligence Systems, 2015, 8 : 75 - 84
  • [38] Subcategories of lattice-valued convergence spaces
    Jäger, G
    FUZZY SETS AND SYSTEMS, 2005, 156 (01) : 1 - 24
  • [39] LATTICE-VALUED BOREL MEASURES III
    Khurana, Surjit Singh
    ARCHIVUM MATHEMATICUM, 2008, 44 (04): : 307 - 316
  • [40] Insertion of lattice-valued and hedgehog-valued functions
    Gutierrez García, J
    Kubiak, T
    Vicente, MAD
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (09) : 1458 - 1475