On the uniformization of lattice-valued frames

被引:0
|
作者
Gutierrez Garcia, J. [1 ]
Mardones-Perez, I. [1 ]
Picado, J. [2 ]
de Prada Vicente, M. A. [1 ]
机构
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
关键词
L-valued frame; L-topological space; Uniform L-valued frame; (Lowen) iota functors; Upper/lower forgetful functors; Complete category; Cocomplete category; CATEGORY THEORETIC ASPECTS; FUZZY TOPOLOGICAL-SPACES; CHAIN;
D O I
10.1016/j.fss.2010.11.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note we discuss the appropriate way of uniformizing the notion of a lattice-valued frame introduced by Pultr and Rodabaugh in 2003. We cover the case of a completely distributive lattice (which is, in a certain sense, the most general one) and study the corresponding category of uniform lattice-valued frames. In particular, we show that this is a complete and cocomplete category that extends in a nice manner the category of uniform frames, widely studied in the literature. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [1] Lattice-valued fuzzy frames
    El-Saady, Kamal
    INFORMATION SCIENCES, 2007, 177 (21) : 4810 - 4819
  • [2] Quantale algebras as a generalization of lattice-valued frames
    Solovyov, Sergey A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (03): : 781 - 809
  • [3] On lattice-valued frames: The completely distributive case
    Gutierrez Garcia, Javier
    Hoehle, Ulrich
    de Prada Vicente, Maria Angeles
    FUZZY SETS AND SYSTEMS, 2010, 161 (07) : 1022 - 1030
  • [4] LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (02): : 67 - 89
  • [5] Connectedness for lattice-valued subsets in lattice-valued convergence spaces
    Jin, Qiu
    Li, Lingqiang
    Lv, Yanrui
    Zhao, Fangfang
    Zou, Juan
    QUAESTIONES MATHEMATICAE, 2019, 42 (02) : 135 - 150
  • [6] Uniform-type structures on lattice-valued spaces and frames
    Gutierrez Garcia, Javier
    Mardones-Perez, Iraide
    Picado, Jorge
    de Prada Vicente, Maria Angeles
    FUZZY SETS AND SYSTEMS, 2008, 159 (19) : 2469 - 2487
  • [7] Lattice-valued preordered sets as lattice-valued topological systems
    Denniston, Jeffrey T.
    Melton, Austin
    Rodabaugh, Stephen E.
    Solovyov, Sergey A.
    FUZZY SETS AND SYSTEMS, 2015, 259 : 89 - 110
  • [8] LATTICE-VALUED FUZZY MEASURE AND LATTICE-VALUED FUZZY INTEGRAL
    LIU, XC
    ZHANG, GQ
    FUZZY SETS AND SYSTEMS, 1994, 62 (03) : 319 - 332
  • [9] The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars
    Tang, Juan
    Fang, Yong
    Tang, Jian-Gang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [10] Algebraic Study of Lattice-Valued Logic and Lattice-Valued Modal Logic
    Maruyama, Yoshihiro
    LOGIC AND ITS APPLICATIONS, 2009, 5378 : 170 - 184